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The phase-field approach for describing the growth and dissolution of a phase of constant composition in a

binary solution is considered. The relaxation equations for the phase field and impurity concentration in the phase

of variable composition, taking into account the thermodynamic properties of compounds, are derived from the

condition of non-decreasing Gibbs energy. It is demonstrated that the equations derived from the principles of

nonequilibrium thermodynamics and the law of conservation of matter in volume imply the existence of two

mechanisms of growth and dissolution of stoichiometries. The model permits the use of an arbitrary binary

system with stoichiometries. For purposes of verification, the Si−Ti binary system, described by the experimentally

calculated Gibbs energies of the phases, has been employed. A one-dimensional numerical simulation of the phase

transition process under different initial conditions has been conducted, exhibiting qualitative agreement with the

anticipated behaviour of the melting−solidification processes.
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Introduction

The development of novel and promising materials based

on composites [1] often implies dealing with inclusions

of constant composition (so-called stoichiometric phases

or compounds) that provide the necessary physical and

chemical material properties. Such compounds [2] include
carbides, nitrides, oxides, and intermetallic compounds.

Stoichiometric phases are also widespread in the mass

metallurgical production of steel and iron. Iron carbide

(cementite) and graphite inclusions present in them [3] are
phases of constant composition. The unique mechanical

properties of numerous high-alloy steels are the result of for-

mation of carbides and nitrides by alloying components [4].
Experimental studies into the strength characteristics of the

Al−Ni binary system [5] revealed the formation of the Al3Ni

stoichiometric phase in the interdendritic region, which has a

significant effect on the ultimate tensile strength and tensile

yield strength. Another issue related to the influence of

phases of constant composition is the growth of Cu6Sn5
in soldered copper contacts [6,7]. Extended non-monotonic

relaxation of viscosity near the liquidus line, which bounds

the two-phase region of liquid and the Al3Y stoichiometry,

was observed in the study focused on measurement of the

Al−Y melt viscosity [8].

The prediction of formation of compounds in computer

packages for casting simulation (similar to [9]) is a relevant

problem that has not been quite resolved yet: the issue lies

in incomplete theoretical understanding of this process.

The thermodynamic peculiarity of phases of constant

composition is in the mathematical description of their

Gibbs energy as a function of temperature only [10], which

precludes one from finding the chemical potential of a phase

as a derivative with respect to the mole fraction (concentra-
tion) of an impurity. Nevertheless, chemical potential is

crucial to understanding the phase equilibrium and deter-

mines the course of relaxation processes in multicomponent

systems. One of the previously proposed approaches to

solving the problem of uncertainty of chemical potential

consists in substituting the Gibbs energy of a phase of

constant composition by a parabola with its parameters

determined from the required dynamics [11]. Although this

approach allows one to characterize the processes of growth

and dissolution, it does not always provide an accurate

description of the actual behavior of the system, since the

choice of approximating parabolas is fairly arbitrary.

It is evident that the problem of characterizing the kinetics

of growth and dissolution of stoichiometric phases is rele-

vant to the prediction of microstructure of multicomponent

systems used in modern metallurgical production. One

of the key steps toward solving the indicated problem

is to obtain a system of equations that characterize the

processes of interaction of phases of variable composition

and stoichiometries
”
as is“ without changing the type

of Gibbs energy and with account for thermodynamic

uncertainty of the chemical potential of the stoichiometries.

To gain a better understanding of the physics of the process,

we limit ourselves to the two-phase interaction in a binary
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system, simplifying the analysis of the resulting system

of equations. Thus, the aim of the present study is to

derive a system of equations for the kinetics of growth

and dissolution of stoichiometric phases in the two-phase

case with account for their thermodynamic features and

verify the obtained model via numerical simulations for a

real binary system.

It is demonstrated below that if we rely on nonequilib-

rium thermodynamics, a model close to the one obtained

in [12] follows from the principle of Gibbs energy reduction

for a two-phase binary system and with account for the law

of conservation of impurity in volume. A significant step

up from the indicated model is the presence of a thermody-

namically consistent diffusion equation for the mole fraction

in the liquid phase, which brings the present model closer

to the phase field model for the interaction of two phases of

variable composition [13]. It is demonstrated that the model

operates correctly with nonzero mole fractions in phases of

constant composition, which was not investigated in [12].
The obtained model is examined numerically by comparing

the dynamics of the phase field profiles and the impurity

concentration in the phase of variable composition (liquid
phase) in the case of solidification proceeding via diffusion-

controlled and kinetic mechanisms. The change in the total

Gibbs energy of the system and the conservation of matter

in the simulated volume are estimated. Simulations are also

performed for different initial values of the mole fraction in

the liquid phase, and the correspondence of dynamics to the

expected physical processes is demonstrated.

1. Dynamics equations

Let us consider the problem of interaction between

a phase of constant composition (stoichiometry or solid

phase) and a phase of variable composition (liquid phase)
in a two-component (binary) system in the isothermal

case, which is commonly understood as a scenario where

temperature is an external parameter of the system that

remains constant in space, but possibly varies with time.

Let us introduce scalar field ϕ(r, t) that characterizes

unambiguously the state of matter at a point in space. In the

stoichiometry (S) volume, the phase field has constant value

ϕ = 1; in the liquid phase (L) volume, the value is ϕ = 0.

In the region of phase transition, ϕ varies smoothly but

rapidly from 0 to 1, forming a diffuse boundary. Scalar

field xL(r, t) characterizes the mole fraction of impurity in

the liquid phase; the mole fraction of impurity in the solid

phase is constant and equal to xS .

Let us examine the Gibbs energy functional for the above

system with the volume change in phase transition being

neglected:

G =

∫

V

[

p(ϕ)GS(T ) +
(

1− p(ϕ)
)

GL(xL, T )

+ W g(ϕ) +
σ 2

2
(∇ϕ)2

]

dV, (1)

where GS(T ) and GL(xL, T ) are the equilibrium bulk

Gibbs energy densities of the stoichiometric and liquid

phases, respectively; p(ϕ) is the interpolation function that

ensures phase stability; g(ϕ) is the
”
double-well“ potential

that constrains spontaneous transitions between phases;

(∇ϕ)2 is the contribution of the interface surface between

phases associated with the diffuse boundary; W is the

energy barrier height; and σ is the kinetic coefficient related

to surface energy. In what follows, the explicit dependence

on ϕ for p(ϕ) and g(ϕ) and the dependence on temperature

T and xL for GL(xL, T ) and GS(T ) are omitted for brevity.

According to Kessler [14], functions p and g may

be chosen fairly arbitrarily, but must satisfy mandatory

conditions

p(0)=0, p(1) = 1, p(1−ϕ)=1−p(ϕ), p′(0)= p′(1) = 0,

g(0) = g(1) = g ′(0) = g ′(1) = 0, g ′′(ϕ) < 0,

where (′) denotes a derivative with respect to the argument.

The following expressions are used in the present study:

p(ϕ) = ϕ3(10− 15ϕ + 6ϕ2), g(ϕ) = ϕ2(1− ϕ)2.

We find the time derivative of the total Gibbs energy by

transforming the term with mixed derivative σ 2
∇ϕ(∇̇ϕ) in

accordance with the Gauss theorem under the assumption

of constancy of ϕ at the boundaries of the system volume.

The dot accent (˙) denotes a partial time derivative.

Having grouped the terms, we then obtain an expression

for the time derivative of the Gibbs energy:

dG
dt

=

∫

V

[

ϕ̇
(

−σ 2
∇

2ϕ + W g ′ + p′(GS − GL)
)

+ (1− p)µLẋL

]

dV, (2)

where

µL = µL(xL) =
∂GL

∂xL
.

Let us write down the law of conservation of impurity in

the studied system. The fraction of impurity in the liquid

phase is not conserved due to the processes of impurity

exchange between phases. However, the total amount of

impurity in the solution is conserved. Therefore, we take

averaged concentration in volume 〈x〉 = pxS + (1− p)xL as

the conserved quantity. The law of conservation is then

written as

∂

∂t
〈x〉 = (1− p)ẋL + (xS − xL)p′ϕ̇ = −∇ · JD, (3)

where JD is the diffusion flux. Next, we derive an

expression for (1− p)ẋL from relation (3) and insert it

into (2). Having transformed the −µL
∇·JD expression in

accordance with the Gauss theorem under the assumption of
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zero diffusion flux at the boundaries of the system volume

and grouped the terms, we present derivative (2) as

dG
dt

=

∫

V

[

ϕ̇
(

−σ 2
∇

2ϕ+W g ′+p′
(

GS − GL−(xS−xL)µ
L
)

)

+ JD∇µL
]

dV.

(4)
The following is the simplest choice of a system of

equations ensuring that the Gibbs energy does not increase

(in accordance with the principles of irreversible thermody-

namics [15]):

{

ϕ̇=−Mϕ

[

−σ 2
∇

2ϕ + W g ′ + p′(GS−GL−(xS−xL)µ
L)

]

,

JD = −MD ∇µL,

(5)
where Mϕ ≥ 0 is the phase field mobility and MD ≥ 0 is

the diffusion mobility.

It is evident that the diffusion flux should be localized in

the liquid phase; therefore, relying on the positive definite-

ness of mobility, we perform substitution MD = (1− p)MF

and obtain

JD = −(1− p)MF∇µL.

At T = const, a connection with the Fick’s law in the liquid

phase becomes evident:

JD = −(1− p)MF∇µL = −(1− p)MF
∂µL

∂xL
∇xL

= −(1− p)D∇xL.

Having inserted the obtained expression for flux JD

into conservation law (3) and derived an expression for

(1− p)ẋL, we obtain a system of equations for the dynamics

of the phase field and the mole fraction of impurity in the

liquid phase:

{

ϕ̇ = Mϕ

[

σ 2
∇

2ϕ −W g ′ − p′
(

GS − GL − (xS − xL)µ
L
)]

,

(1− p)ẋL = −(xS − xL)p′ϕ̇ + ∇
[

(1− p)MF∇µL
]

.

(6)

2. Analysis of the obtained equations

Let us analyze the obtained equation for the phase

field. Consider a graphical interpretation of the Gibbs

phase equilibrium between a stoichiometry and a phase of

variable composition. The condition for phase equilibrium

of two phases of variable composition is the presence of

a common tangent in the coordinates of concentration and

Gibbs energy. This condition corresponds to the equality

of chemical potentials (the value of the first derivative

at a point as the slope of the tangent). Since it is

impossible to draw a tangent to the stoichiometric phase

in the indicated coordinates, the only option that ensures

”
coherence“ of Gibbs energies is a tangent to the phase

of variable composition passing through the point of Gibbs
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Figure 1. Model Gibbs energies of a phase of variable

composition (parabola) and a stoichiometry (dot) with a phase

equilibrium line.

energy of the stoichiometry. Figure 1 shows the model

Gibbs energies of the stoichiometry (dot) and the phase of

variable composition (parabolic function) and intersecting

and tangent lines, respectively. To determine the inclination

of the line, one may find the ratio between the differences in

ordinates and abscissas of two points; at the same time, the

inclination of the tangent to the Gibbs energy of the phase

of variable composition at the point of contact is µL(x∗

L).
The angle may be expressed as

k = µL(x
∗

L) =
GS − GL(x∗

L)

xS − x∗

L
.

It is evident that the obtained expression corresponds

exactly to a thermodynamic source in the case of its zeroing.

Thus, the thermodynamic source is zero under the condition

of phase equilibrium ϕ̇ = 0, and the second part of the

equation should also be equal to zero: σ 2
∇ϕ2 −W g ′ = 0.

In the one-dimensional case, the remaining part of the

equation specifies a stationary solution for the phase field in

the form of a
”
kink“ function [16]:

ϕ(z ) =
1

2

(

1− tanh(z/δ)
)

,

where δ is the interface thickness and z is the coordinate.

Kinetic coefficient σ 2 and energy barrier height W are

related to each other and to physical parameters δ and χ

(surface energy density) in the following way:

σ 2 = 3χδ, W =
6χ

δ
.

The equation for the mole fraction of impurity in the

liquid phase is a modified diffusion equation with a source

at the interface. To obtain a better estimate, we substitute

ϕ̇ with the corresponding equation for the phase field and

assume that the
”
kink“ profile is preserved; the pair of terms

σ 2
∇

2ϕ−W g ′ then adds up to zero. The thermodynamic

source may be written as −p′1�, where 1� is the

Technical Physics, 2024, Vol. 69, No. 10



Phase-field model of growth and dissolution of stoichiometric phase in binary solution 1503

thermodynamic force of the phase transition. The equation

for the mole fraction then takes the form

(1− p)ẋL = ∇ · JD + (p′)2(xS − xL)Mϕ1�.

Let us consider the conditions under which the source

inside the diffuse boundary is zeroed out. There are two

clear cases: when the mole fraction of the liquid phase

matches the mole fraction of the stoichiometry and when

the thermodynamic source is zeroed out.

The first case may be associated with congruent solidi-

fication and melting. In this scenario, xL is equal or close

to xS , which implies front movement without composition

change. Indeed, if one sets the initial distribution of the

mole fraction to xL(r, 0) = xS , both terms in the diffusion

equation vanish. In this case, the dynamics of the system

is governed entirely by the phase field equation; therefore,

the value and order of magnitude of mobility Mϕ determine

the velocity of the phase transition front. The model has

no restrictions for such scenarios, which means that Mϕ

may be chosen in such a way as to provide the required

dynamics of melting and solidification of a phase of constant

composition. The above mechanism may be denoted as a

kinetic one.

If 1� = 0, the entire subsequent dynamics is governed by

diffusion flux JD . The release or absorption of impurity in

the region of the interface will continue when the mole frac-

tion shifts away from the equilibrium value. This mechanism

of growth or dissolution of a phase of constant composition

may be denoted as
”
diffusion-controlled“ one. The phase

transition process is indeed controlled by diffusion in this

case, which means that the rate of diffusion processes

exceeds the front velocity.

The theoretical approach with separate diffusion-

controlled and kinetic mechanisms was considered in [12]

(albeit in the vicinity of the liquidus line).

The above reasoning suggests that phase field mobil-

ity Mϕ depends explicitly on the mole fraction of the

phase of variable composition, contradicting the general

assumptions of its dependence on temperature only. A

functional dependence of this kind may contain a term

associated with a sharp peak in the region of the mole

fraction of stoichiometry. This approach may provide an

explanation for switching of the solidification mechanism

from diffusion-controlled to kinetic and back in passing

through the xL = xS point. This effect may be observed

in a numerical experiment by setting such parameters of

the functional dependence of Mϕ that ensure, on the one

hand, thermodynamic consistency in the diffusion-controlled

mechanism and, on the other hand, a sharp increase in

velocity of the crystallization front in the kinetic mechanism.

However, it is currently impossible to test it without actual

experiments.

3. Numerical model

To verify the obtained model, we perform numerical

simulation in the scenario of directional solidification. For

simplicity (specifically, to exclude the effects of surface

tension), we consider the one-dimensional case. The

mobilities are assumed to be constant: Mϕ = const and

MF = const.

Let us reduce system of equations (6) to dimensionless

form by introducing substitutions for space and time in the

form of z = δζ and t = t0τ , respectively:







∂τ ϕ = α
[

∂2ζ ζϕ − 2g ′ − p′G̃0(G
S
− G

L
− (xS − xL)µ

L)
]

,

(1− p)∂τ xL = −(xS − xL)p′∂τ ϕ + ∂ζ

[

(1− p)∂ζ µ
L
]

,

where

∂τ =
∂

∂τ
, ∂ζ =

∂

∂ζ
, ∂2ζ ζ =

∂2

∂ζ
,

G
S,L

=
GS,L

G0

, µL =
µL

G0

, G̃0 =
G0δ

2

σ 2
,

t0 =
δ2

MFG0

, α =
Mϕσ

2

MFG0

.

Diffusion processes are dominant (α < 1) in the resulting

dimensionless model. This choice was made on the

grounds of practical relevance. It is obvious that the

diffusion-controlled mechanism of melting or solidification

should prevail in the overwhelming majority of cases

(where xL(z , 0) 6= xS). In the cases with a congruent

solidification mechanism (governed by the phase transition

kinetics), we raise the value of α by several orders of

magnitude (α ≫ 1) to preserve dimensional time parameter

t0, compensating for this by reducing 1τ to maintain

stability.

Let us use the explicit finite difference scheme to

solve the obtained dimensionless system. We consider

the problem on the ζ ∈ [−25; 25] interval with initial and

boundary conditions

ϕ(ζ , 0) =
1

2

(

1− tanh(ζ )
)

, xL(ζ , 0) = x0,

ϕ(−25, τ ) = 1, ϕ(25, τ ) = 0,

∂xL(ζ , τ )

∂ζ

∣

∣

∣

∣

ζ=−25

=
∂xL(ζ , τ )

∂ζ

∣

∣

∣

∣

ζ=25

= 0.

Space step 1ζ = 0.1 and time step 1τ are chosen empir-

ically with regard to stability of the explicit scheme. Since

the solution of the concentration field equation is ambiguous

at ϕ = 1, we supplement the numerical algorithm with a

solution in the form of x ′

L(ζ ) = 0 at 1− p(ϕ) < 10−6.
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4. Numerical modeling of the process

Let us verify the obtained model by performing nu-

merical modeling for the Si−Ti binary system. One

intriguing feature of this system is the existence of two

nearby stoichiometric phases: Si2Ti and SiTi. The other

key features of the presented compounds are congru-

ent solidification Liquid → Si2Ti and peritectic reaction

Liquid + Si4Ti5 → SiTi. Since the model was formulated

for two phases, we limit ourselves in peritectics to the

interaction of the liquid phase and stoichiometry SiTi. It is

evident that the model does not impose any restrictions on

the modeled binary system; only the presence of one phase

of variable composition (liquid or solid solution) and one

stoichiometry is important. Therefore, one may examine an

arbitrary system without any features (such as a spinodal or

binodal decomposition) instead of Si−Ti.

The following parameters are used for actual mod-

eling: interface thickness δ = 10−9 m, molar volume

Vm = 10−6 m3/mole, and χ = 0.3 J/m2.

Figure 2 shows a part of the Si−Ti phase diagram.

Points corresponding to the initial conditions of numerical

modeling are indicated. Let us consider the diffusion-

controlled growth and dissolution mechanism and examine

three points (a, a ′, b) at which the stoichiometric SiTi phase

should grow, dissolve, and be in equilibrium with the liquid

phase, respectively. We also analyze the kinetic mechanism

at points c, c ′ and verify the possibility of kinetic growth in

the
”
diffusion region“ at points d, d′ for the stoichiometric

Si2Ti phase with assumed growth and dissolution in each

pair.

The physical conformity of the process is monitored

via the equations in dimensionless form, calculation of

the total Gibbs energy of system (1), and integration of

averaged mole fraction 〈x〉 = pxS + (1− p)xL over the

entire volume.

Let us consider the diffusion-controlled mechanism of

growth and dissolution (a, a ′, b). In this case, coefficient
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Figure 2. Part of the phase diagram of the Si−Ti binary system

with the initial points for numerical modeling indicated, which was

plotted with the use of actual experimental Gibbs energies [17].
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Figure 3. Profiles of phase field ϕ (solid line) and mole fraction in

the liquid phase xL (dashed line) for the diffusion growth process

at different points in dimensionless time.

α < 1; we determine empirically the value of this coeffi-

cient at which physically acceptable dynamics (specifically,
preservation of the interface profile, monotonic non-increase

of the Gibbs energy, and preservation of the volumetric

amount of impurity) is observed. The results of prelim-

inary modeling demonstrated that the above conditions

are satisfied at α = 0.5. At smaller values, the pattern

remains the same; the only difference is that the front

velocity changes. The time step was determined empirically:

1τ = 10−3 = 0.1 · (1ζ )2.

The phase field profile (solid line) shifts to the right

in Fig. 3, which corresponds to the growth of the stoi-

chiometric phase. The mole fraction in the liquid phase

(dashed line) has a clear tendency to slope toward the front

where the impurity passes into the solid phase. By the

end of modeling, the impurity fraction in the liquid levels

out and tends to equilibrium (black dashed line), and the

processes subside. It is evident that the mole fraction profile

is not entirely correct in the ϕ → 1 region at intermediate

points in time; this behavior is attributable to the specifics

of calculation, since the energy and the averaged volume

fraction correspond to the underlying physics. One may

also notice this profile is normalized by the end of transfer

processes. It is worth noting that the geometric symbols on

the plots do not denote any significant points and are were

added for clarity in black-and-white printing.

The pattern in Fig. 4 is inverse to the one observed

in the first case. The profile shifts to the left, indicating

dissolution of the stoichiometric phase. The mole fraction

profile has a downward trend, suggesting the release and

accumulation of impurity in the region of the interface with

subsequent transfer to the right boundary. Upon completion

of relaxation processes, the mole fraction in the liquid phase

tends to the equilibrium value. In the above cases, the

fluctuations of relative variation of the averaged impurity

mole fraction are on the order of 10−6 .

The results of numerical modeling for thermodynamic

equilibrium (b) are not shown, since they provide no

useful information. As expected, the phase field profile

is stationary, and the distribution of impurity in the liquid

Technical Physics, 2024, Vol. 69, No. 10
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in the liquid phase xL (dashed line) for the diffusion dissolution

process at different points in dimensionless time.
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in the liquid phase xL (dashed line) for the kinetic growth process

at x0 = xS and different points in dimensionless time.

phase is constant and identical to the initial one. The

simulation time was increased by a factor of 2.5 in this

case. The relative variation of the averaged fraction is on

the order of 10−10.

Let us consider the kinetic mechanism in case c . We

set parameter α = 102 to ensure that the solidification

process prevails over the diffusion component. This value is

compensated for by time step 1τ = 10−6 = 10−4 · (1ζ )2

to preserve t0 . The modeling results are presented in

Fig. 5. The growth of the stoichiometric phase without

compositional changes in the liquid phase is observed. The

profile has a curved shape and differs from the stationary

solution, but it does not change over time, indicating a

different state of local equilibrium for the phase field. This

is likely to be associated with a constantly acting non-zero

thermodynamic source in the region of the diffuse boundary,

since the xS value is not equilibrium for it. It is worth

noting that the front velocity remains constant, deviating

from the diffusion case where this velocity decreases over

time. The total energy of the system decreases, and the

relative variation of the averaged mole fraction in volume is

on the order of 10−13.

The case of dissolution under the same initial conditions

and parameters (c ′ in Fig. 6) is also worth noting. The

system has a similar behavior pattern in this case, but the

front moves to the left. Notably, the curvature of the diffuse

boundary profile is inverted relative to the growth case,

implying that the sign of the source affects its shape. The

relative variation of the averaged mole fraction in volume is

on the order of 10−12.

Let us consider case d under the assumption of kinetic

solidification. The modeling parameters are the same as in

the previous case. A highly atypical pattern is seen in Fig. 7.

The front starts moving, and a bulge, which eventually forms

a
”
step,“ emerges approximately at the level of ϕ = 0.5 after

a very short time.

This behavior is very much out of line with the dominant

paradigm of the phase field method; the values within the

phases must be preserved, and they are equal to ϕ = 0, 1

in this model. It may be interpreted as the coexistence

of two phases in a certain relation. The xL mole fraction

distributions feature a dip that gets deeper with time. This

is indicative of rapid consumption of impurity, which is

characteristic of the stoichiometry growth process; however,

such consumption in the diffuse region is clearly localized

closer to the solid phase. The consumption in the liquid

phase region is much weaker, and the Fickian flux cannot

compensate for the resulting dip, which was noted earlier

in the discussion of the kinetic mechanism. It may also

be noted that the impurity consumption jumps over the

equilibrium value and goes further, tending to zero mole

fraction. Chemical potential µL has a peculiarity at the
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edges of the mole fraction range: it tends to infinity,

sending to infinity the thermodynamic source in the phase

field equation (although only in the left part of the diffuse

boundary). This instability leads to splitting of the phase

field in an attempt to balance the driving force with account

for the expression for the averaged mole fraction (the
law of conservation of impurity). The system implements

the required dynamics through a combination of phases

that suppresses the thermodynamic source. The profile

of the fraction demonstrates that the steady-state solution

is extremely close to the equilibrium value (point (d∗)
in the phase diagram). For its part, the energy of the

system decreases, and the relative variation of the averaged

mole fraction in volume is on the order of 10−6, indicating

that the underlying physical principles function correctly.

Such behavior may also be interpreted as thermodynamic

inconsistency of processes. Another explanation for this

effect lies in the isothermal nature of the problem; there is

currently no understanding how the system would behave

with heat release in the interface since a non-isothermal

system of equations would have an extremely nonlinear

character.

The dissolution process in case d′ (Fig. 8) is analyzed

in a similar fashion. In contrast to the previous simulation,

the process proceeds correctly with consistent movement

of the diffuse boundary to the left. The key feature of

this case is the rise of the impurity mole fraction to xS

and subsequent transition to case of c , which is rather

unexpected. Presumably, the system tries to nullify the

source in the diffusion equation, and since such temperature

has no corresponding value of equilibrium mole fraction x∗

L
that would zero out the thermodynamic source, zeroing

proceeds through the kinetic component.

Figure 9 illustrates the variation of the total Gibbs energy

of the system (relative to its initial value) with different

ratios of kinetic coefficients as a function of dimensionless

time. In cases a and a ′, the curves are of a relaxation

type with asymptotics, which is consistent with the observed

dynamics. In case b, the energy is almost constant,

but certain fluctuations (on the order of 10−3), which
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include those in the positive direction, are visible under

sufficient magnification. This is presumed to be related to a

computational error, and the magnitude of these fluctuations

is insignificant. Cases c, c ′ and d′ are characterized by a

linear reduction without any inflections and a definite end.

The phase field profile does indeed reveal a trend toward

infinite motion. Of particular note is case d′ where the

system undergoes kinetic dissolution in spite of the fact that

the point belongs to the
”
diffusion-controlled region“ (owing

to this, the line of relative variation of the Gibbs energy goes

near c and c ′).
Case d is characterized by a monotonic energy reduction,

although one may notice a dip characteristic of the diffusion-

controlled mechanism at the very beginning. This feature

differs from the sharp decrease in d′. The obtained profiles

make it clear that the phase field splits approximately

at τ = 0.015, and the system switches to the kinetic

mechanism; from this point on, the plot of relative energy

variation resembles a linear one. However, its decrement

is significantly less profound than that of similar ones,

since the mole fraction of impurity in the
”
step“ region

becomes close to an equilibrium one in the event of

phase field splitting, which implies that the thermodynamic

source magnitude is smaller than the corresponding value at

constant xL(ζ , τ ) = xS . Therefore, the velocity of the front

governed by ϕ̇ is significantly lower, and the Gibbs energy

reduction is thus also less profound.

In addition to the Si−Ti binary system, systems Cu−Sn,

Al−Y, and Al−Co were modeled numerically. Identical

results verifying the conclusions made for Si−Ti were

obtained in all cases.

5. Numerical modeling of dissolution of
graphite in liquid iron

To compare the obtained model with experimental data,

we consider the interaction between a drop of liquid iron

solution unsaturated with carbon and a graphite substrate

under isothermal conditions [18]. It is evident that an

actual experiment of this kind may be characterized as

macroscopic, while the obtained model operates with meso-

scopic systems. This discrepancy complicates the modeling

process significantly, since the characteristic spatial and

temporal parameters in a mesoscopic scenario are much

smaller than those in a macroscopic one. It is technically

difficult to combine phenomena of different scales within

one formalism. Therefore, we interpolate the experimental

data to mesoscopic scales to verify the obtained model.

Let us consider the system as a one-dimensional problem

on an infinite interval with a liquid solution of carbon in

iron and a stoichiometric phase (graphite) on the right and

left semiaxes, respectively. Treating carbon as an impurity,

we make an obvious conclusion that the mole fraction of

stoichiometry is xS = 1.0, and the initial mole fraction of

carbon in liquid is x0 = 0.152 (converted from a mass

fraction of 3.7%). Let us direct the coordinate axis vertically

Technical Physics, 2024, Vol. 69, No. 10
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Figure 9. Relative variation of the total Gibbs energy of the system in different cases normalized to the initial energy value.

and perpendicular to the plane of contact between the drop

and the graphite substrate. Since the initial fraction of

carbon is clearly lower than xS , we consider a diffusion-

controlled dissolution process with coefficients α = 0.1 and

β = 1. The molar Gibbs energies of phases were taken

from [19].
Since the source of impurity in the liquid phase is

confined to the interface, a homogeneous diffusion equation

may be examined in the rest of the space. The asymptotic

boundary conditions of the third kind, which follow from

its solution, are applied at the right boundary. The solution

itself is sought (with account for the fact that the diffusion

coefficient is equal to unity in dimensionless variables) in

the form of Green function

xL(ζ , τ ) = x0 + A exp

(

−
(ζ − ζ0)

2

4τ

)

, (8)

where ζ0 is the position of the phase transition front,

which is determined at ϕ(ζ , τ ) = 0.5. Differentiating this

expression with respect to ζ and expressing A from (8), we
obtain

∂xL(ζ , τ )

∂ζ
= −

L
2τ

(

xL(ζ , τ ) − x0

)

, (9)

where L is the distance to the crystallization front. This

approach allows one to calculate the mole fraction field at

the right boundary with account for asymptotic attenuation

at infinity.

Let us consider finite interval ζ ∈ [−25; 100]. When the

front reaches coordinate ζ = −10, we shift the fields jointly

to the right, completing the empty domain with values

at the left boundary. Since diffuse boundary width δ in

system (7) specifies coefficient G̃0 of the thermodynamic

source and dimensional time parameter t0 only, we increase

it to δ = 10−8 m to reduce the calculation time.

Figure 10 shows the profiles of phase field ϕ(ζ , τ ) and

mole fraction xL(ζ , τ ) in the liquid phase at the moment

when ϕ(−1, τ ) = 0.5 after two successive shifts. The

concentration profiles show signs of operation of boundary
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in the liquid phase xL (dashed line) for isothermal dissolution of

carbon in a liquid unsaturated iron solution at different points

in dimensionless time τ . The black horizontal dashed line

corresponds to the mole fraction of carbon in the liquid phase

in the case of phase equilibrium.

conditions of the third kind; the plots
”
penetrate“ the right

boundary of the domain at a non-zero varying angle and are

not tied to a specific point (as with boundary conditions of

the first kind).
To determine dimensional time, we calculate the specific

value of t0; the Fickian flux mobility may be expressed as

MF = D

(

dµL

dxL

)−1

,

then

t0 =
δ2

DG0

dµL

dxL
= 6.73 · 10−8, (10)

where the value of G0 and the derivative of the chemical

potential were determined at point xL at which GL has a

minimum. The value of diffusion coefficient D was taken

from [20].
Figure 11 (left panel) shows the position of the front

(solid line), which is specified by the position of point

ϕ(z , t) = 0.5, and its velocity (dashed line) as functions of
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dot line) and the approximating (solid) line plotted for experimental points [18].

time. It can be seen that the front movement is quite close

to being uniform at time t ≈ 80ms, which is evidenced

by an almost linear time dependence of the front position

and a near-constant velocity. However, it is also evident

that a certain small contribution, which slows down the

front movement and induces deviation of the plots from

ideal straight lines, is present in both dependences. Since

the problem is solved in an infinite domain, the velocity

should obviously tend to zero at t → ∞ (this is a feature

of the calculation performed). Let us try to determine the

approximate values that the dissolution depth in graphite

should reach at times corresponding to the experimental

data. With this aim in view, we extend the plot of dissolution

depth with a straight (dash-and-dot) line that originates from
the end point of modeling with a velocity corresponding to

it. In the right panel of Fig. 11, the obtained straight line

is contrasted with the experimental data points [19], which

are also approximated with a straight (solid) line plotted

using the least-squares method. It can be seen that the

straight line derived from the numerical experiment does

not only match the experimental one in order of magnitude

of its values, but also intersects it at an experimental point

at t = 240 s. Comparing these two linear dependences, one

may make two conclusions: the front movement velocity

should decrease additionally by a factor of 4.5 and should

virtually stop varying at a certain point in time. The plot

will then shift upward relative to the abscissa axis, and the

dependences will probably match.

Conclusion

A physical and mathematical model of growth and

dissolution of a stoichiometric phase in a phase of variable

composition (liquid phase) was presented. The obtained

model is designed for the simplest case of two-phase

interaction within a binary system under isothermal con-

ditions and takes into account the lack of a mathematically

defined chemical potential of the stoichiometric phase. The

obtained system of equations was analyzed qualitatively, and

two mechanisms (namely, diffusion-controlled and kinetic)
of phase transition between the stoichiometric phase and

the phase of variable composition were identified. Cases

corresponding to these two mechanisms and consistent with

the physical principles of the process were examined. The

model was verified for the Si−Ti binary system with actual

experimental Gibbs energies. Profiles of the phase field and

the field of mole fraction of impurity in the liquid phase

and relative variations of the Gibbs energy and the averaged

mole fraction in the growth and dissolution processes were

presented.

The results of modeling revealed that the obtained

system of dynamic equations based on the principles of

thermodynamics coupled with the kinetic law of impurity

conservation in volume does not allow for kinetic growth

outside a mole fraction close to the stoichiometry value.

Splitting of the phase field profile occurs, which violates

the dominant paradigm of this method. This leads to

a hypothesis that the kinetic mechanism is forbidden

thermodynamically and by the conservation law outside the

regions of congruent solidification. The only way to confirm

or refute this hypothesis is through experiments.

The dissolution of graphite in a liquid iron solution was

also simulated in order to verify the obtained model. Since

the scales of real-life experiments and the obtained model

differ, calculations were performed with the approximations

of an infinite domain and boundary conditions of the third

kind, which allow one to carry out such calculations on

a finite interval. An estimate of the graphite dissolution

depth as a function of time was obtained as a result. The

plotted dependence is close to the experimental points and

matches the actual values in order of magnitude. These

results provide, on the one hand, rather crude and, on the

other hand, quite compelling evidence in favor of validity of

the model and its accuracy in comparison with real objects.
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The discussed model may serve as a basis for predic-

tive simulation of the microstructure of alloys containing

stoichiometric inclusions in real-world systems. The ob-

tained results of numerical modeling provide a theoretical

interpretation of certain phenomena observed in growth

and dissolution of stoichiometric phases, may turn out to

be crucial for understanding the processes of structure

formation in multiphase and multicomponent systems, and

also allow one to introduce various physical effects such

as surface energy anisotropy (dendritic growth), convection
fluxes, processes associated with mechanical stresses, etc.,

into the studied systems.
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