Influence of humic acids on voltage generation in plant bioelectrochemical system
Gasieva Z.A.
1, Galushko A.S.
1, Homyakov Y.V.
1, Panova G.G.
1, Kuleshova T. E.
11Agrophysical Research Institute, St. Petersburg, Russia
Email: melkii844@gmail.com, galushkoas@inbox.ru, www.piter.ru@bk.ru
The possibility of increasing the electrogenic properties of the root environment through the use of potential electron carriers - humic acids (HA) was investigated. In the experiment with lettuce (Lactuca sativa L.) variety Typhoon, it was determined that increasing the concentration of HA in the root environment by 2 times resulted in increase the voltage by 7-16% from the control variant, depending on the place of their addition. The best result - more stable and higher generation of potential difference already from the early periods of the plant incubation, was observed in the variant with addition of HA to the area of the upper electrode - the average voltage value was 418 pm 29 mV and the specific power was 0.2 mW/m2. A number of physicochemical parameters of near-electrode areas in plant bioelectrochemical systems have been studied: electrical conductivity, pH, HA concentration at the end of the plant incubation. The potential electroactivity of microorganisms in the root environment of lettuce was revealed. It has been shown that the ability of HA to play the role of a redox mediator in a bioelectrochemical system largely depended on the location of their concentration. Keywords: plant-microbial fuel cell, redox-mediator, root environment, electrode region.
- B.E. Logan. Microbial Fuel Cells (John Wiley \& Sons, 2008)
- A.J. McCormick, P. Bombelli, R.W. Bradley, R. Thorne, T. Wenzel, C.J. Howe. Energy Environmental Sci., 8 (4), 1092 (2015). DOI: 10.1039/C4EE03875D
- D.P. Strik, H.V.M. Hamelers, J.F. Snel, C.J. Buisman. Intern. J. Energy Research, 32 (9), 870 (2008). DOI: 10.1002/er.1397
- F.T. Kabutey, Q. Zhao, L. Wei, J. Ding, P. Antwi, F.K. Quashie, W. Wang. Renewable and Sustainable Energy Reviews, 110, 402 (2019). DOI: 10.1016/j.rser.2019.05.016
- T.E. Kuleshova, A.S. Galushko, G.G. Panova, E.N. Volkova, W. Apollon, C. Shuang, S. Sevda. Sel'skokhozyaistvennaya Biologiya (Agricultural Biology), 57(3), 425-440 (2022)
- T.E. Kuleshova, N.R. Gall. Eurasian Soil Science, 54 (3), 381 (2021). DOI: 10.1134/S106422932103008X
- S. Maddalwar, K.K. Nayak, M. Kumar, L. Singh. Bioresource Technol., 341, 125772 (2021). DOI: 10.1016/j.biortech.2021.125772
- Y. Ahn, B.E. Logan. Energy Fuels, 27 (1), 271 (2013). DOI: 10.1021/ef3015553
- D.R. Bond, D.R. Lovley. Appl. Environmental Microbiol., 71 (40), 2186 (2005). DOI: 10.1128/AEM.71.4.2186-2189.2005
- C.M. Martinez, H.A. Luis. Biotechnol. Adv., 36 (5), 1412 (2018). DOI: 10.1016/j.biotechadv.2018.05.005
- S. Wilkinson, J. Klar, S. Applegarth. Electroanalysis: An Intern. J. Devoted to Fundamental and Practical Aspects of Electroanalysis, 18 (19-20), 2001 (2006). DOI: 10.1002/elan.200603621
- D.R. Lovley, J.L. Fraga, E.L. Blunt-Harris, L.A. Hayes, E.J.P. Phillips, J.D. Coates. Acta Hydrochimica et Hydrobiological, 26 (3), 152 (1998). DOI: 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
- D. Lovley, J. Coates, E. Blunt-Harris, E. Philips, J. Woodward. Nature, 382 (6590), 445 (1996). DOI: 10.1038/382445a0
- C. Zhang, A. Katayama. Environmental Sci. Technol., 46 (12), 6575 (2012). DOI: 10.1021/es3002025
- N. Stern, J. Mejia, S. He, Y. Yang, M. Ginder-Vogel, EE. Roden. Environ Sci. Technol., 52 (10), 5691 (2018). DOI: 10.1021/acs.est.7b06574
- D.M. Pham, T. Kasai, M. Yamaura, A. Katayama. Chemosphere, 269, 128697 (2021). DOI: 10.1016/j.chemosphere.2020.128697
- P. Yang, T. Jiang, Z. Cong, G. Liu, Y. Guo, Y. Liu, J. Shi, L. Hu, Y. Yin, Y. Cai, G. Jiang. Environ Sci. Technol., 56 (10), 6744 (2022). DOI: 10.1021/acs.est.1c08927
- D.T. Scott, D.M. McKnight, E.L. Blunt-Harris, S.E. Kolesar, D.R. Lovley Environmental Sci. Technol., 32 (19), 2984 (1998). DOI: 10.1021/es980272q
- N. Walpen, G.J. Getzinger, M.H. Schroth, M. Sander. Environmental Sci. Technol., 52 (9), 5236 (2018). DOI: 10.1021/acs.est.8b00594
- F.J. Stevenson. Humus Chemistry: Genesis, Composition, Reactions (John Wiley \& Sons, 1994)
- J. Sun, W. Li, Y. Li, Y. Hu, Y. Zhang. Bioresour. Technol., 142, 407 (2013). DOI: 10.1016/j.biortech.2013.05.039
- L. Huang, I. Angelidaki. Biotechnol. Bioengineer., 100 (3), 413 (2008). DOI:10.1002/bit.21786
- A. Thygesen, F.W. Poulsen, B. Min, I. Angelidaki, A.B. Thomsen. Bioresour. Technol., 100 (3), 1186 (2009). DOI: 10.1016/j.biortech.2008.07.067
- V.A. Chesnokov, E.N. Bazyrina, T.M. Bushueva, N.L. Ilyinskaya. Vyrashchivanie rastenij bez pochvy (Izd-vo Len. un-ta, L., 1960) (in Russian)
- GOST 9517-94 (ISO 5073-85) " Solid fuel. Methods for determination of humic acids yield"\
- D.S. Orlov, L.A. Grishina. Praktikum po himii gumusa: Uchebnoe posobie dlya studentov-pochvovedov universitetov i sel'skohozyajstvennyh institutov (Izd-vo Mosk. un-ta, M., 1981) (in Russian)
- L.T. Shirshova, D.A. Gilichinsky, N.V. Ostroumova, A.M. Ermolaev. Kriosfera Zemli, 19 (4), 107 (2015) (in Russian)
- P. Janov s, S. Kv r zrenecka, L. Madronova. Reactive Functional Polymers, 68, 242 (2008). DOI: 10.1016/j.reactfunctpolym.2007.09.005
- P.A. Campitelli, M.I. Velasco, S.B. Ceppi. Talanta, 69, 1234 (2006). DOI: 10.1016/j.talanta.2005.12.048
- J. Novak, J. Kozler, P. Janos, J. Cezikova, V. Tokarova, L. Madronova. Reactive Functional Polymers, 47, 101 (2001). DOI: 10.1016/S1381-5148(00)00076-6
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.