Influence of humic acids on voltage generation in plant bioelectrochemical system
Gasieva Z.A. 1, Galushko A.S. 1, Homyakov Y.V. 1, Panova G.G. 1, Kuleshova T. E. 1
1Agrophysical Research Institute, St. Petersburg, Russia
Email: melkii844@gmail.com, galushkoas@inbox.ru, www.piter.ru@bk.ru

PDF
The possibility of increasing the electrogenic properties of the root environment through the use of potential electron carriers - humic acids (HA) was investigated. In the experiment with lettuce (Lactuca sativa L.) variety Typhoon, it was determined that increasing the concentration of HA in the root environment by 2 times resulted in increase the voltage by 7-16% from the control variant, depending on the place of their addition. The best result - more stable and higher generation of potential difference already from the early periods of the plant incubation, was observed in the variant with addition of HA to the area of the upper electrode - the average voltage value was 418 pm 29 mV and the specific power was 0.2 mW/m2. A number of physicochemical parameters of near-electrode areas in plant bioelectrochemical systems have been studied: electrical conductivity, pH, HA concentration at the end of the plant incubation. The potential electroactivity of microorganisms in the root environment of lettuce was revealed. It has been shown that the ability of HA to play the role of a redox mediator in a bioelectrochemical system largely depended on the location of their concentration. Keywords: plant-microbial fuel cell, redox-mediator, root environment, electrode region.
  1. B.E. Logan. Microbial Fuel Cells (John Wiley \& Sons, 2008)
  2. A.J. McCormick, P. Bombelli, R.W. Bradley, R. Thorne, T. Wenzel, C.J. Howe. Energy Environmental Sci., 8 (4), 1092 (2015). DOI: 10.1039/C4EE03875D
  3. D.P. Strik, H.V.M. Hamelers, J.F. Snel, C.J. Buisman. Intern. J. Energy Research, 32 (9), 870 (2008). DOI: 10.1002/er.1397
  4. F.T. Kabutey, Q. Zhao, L. Wei, J. Ding, P. Antwi, F.K. Quashie, W. Wang. Renewable and Sustainable Energy Reviews, 110, 402 (2019). DOI: 10.1016/j.rser.2019.05.016
  5. T.E. Kuleshova, A.S. Galushko, G.G. Panova, E.N. Volkova, W. Apollon, C. Shuang, S. Sevda. Sel'skokhozyaistvennaya Biologiya (Agricultural Biology), 57(3), 425-440 (2022)
  6. T.E. Kuleshova, N.R. Gall. Eurasian Soil Science, 54 (3), 381 (2021). DOI: 10.1134/S106422932103008X
  7. S. Maddalwar, K.K. Nayak, M. Kumar, L. Singh. Bioresource Technol., 341, 125772 (2021). DOI: 10.1016/j.biortech.2021.125772
  8. Y. Ahn, B.E. Logan. Energy Fuels, 27 (1), 271 (2013). DOI: 10.1021/ef3015553
  9. D.R. Bond, D.R. Lovley. Appl. Environmental Microbiol., 71 (40), 2186 (2005). DOI: 10.1128/AEM.71.4.2186-2189.2005
  10. C.M. Martinez, H.A. Luis. Biotechnol. Adv., 36 (5), 1412 (2018). DOI: 10.1016/j.biotechadv.2018.05.005
  11. S. Wilkinson, J. Klar, S. Applegarth. Electroanalysis: An Intern. J. Devoted to Fundamental and Practical Aspects of Electroanalysis, 18 (19-20), 2001 (2006). DOI: 10.1002/elan.200603621
  12. D.R. Lovley, J.L. Fraga, E.L. Blunt-Harris, L.A. Hayes, E.J.P. Phillips, J.D. Coates. Acta Hydrochimica et Hydrobiological, 26 (3), 152 (1998). DOI: 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
  13. D. Lovley, J. Coates, E. Blunt-Harris, E. Philips, J. Woodward. Nature, 382 (6590), 445 (1996). DOI: 10.1038/382445a0
  14. C. Zhang, A. Katayama. Environmental Sci. Technol., 46 (12), 6575 (2012). DOI: 10.1021/es3002025
  15. N. Stern, J. Mejia, S. He, Y. Yang, M. Ginder-Vogel, EE. Roden. Environ Sci. Technol., 52 (10), 5691 (2018). DOI: 10.1021/acs.est.7b06574
  16. D.M. Pham, T. Kasai, M. Yamaura, A. Katayama. Chemosphere, 269, 128697 (2021). DOI: 10.1016/j.chemosphere.2020.128697
  17. P. Yang, T. Jiang, Z. Cong, G. Liu, Y. Guo, Y. Liu, J. Shi, L. Hu, Y. Yin, Y. Cai, G. Jiang. Environ Sci. Technol., 56 (10), 6744 (2022). DOI: 10.1021/acs.est.1c08927
  18. D.T. Scott, D.M. McKnight, E.L. Blunt-Harris, S.E. Kolesar, D.R. Lovley Environmental Sci. Technol., 32 (19), 2984 (1998). DOI: 10.1021/es980272q
  19. N. Walpen, G.J. Getzinger, M.H. Schroth, M. Sander. Environmental Sci. Technol., 52 (9), 5236 (2018). DOI: 10.1021/acs.est.8b00594
  20. F.J. Stevenson. Humus Chemistry: Genesis, Composition, Reactions (John Wiley \& Sons, 1994)
  21. J. Sun, W. Li, Y. Li, Y. Hu, Y. Zhang. Bioresour. Technol., 142, 407 (2013). DOI: 10.1016/j.biortech.2013.05.039
  22. L. Huang, I. Angelidaki. Biotechnol. Bioengineer., 100 (3), 413 (2008). DOI:10.1002/bit.21786
  23. A. Thygesen, F.W. Poulsen, B. Min, I. Angelidaki, A.B. Thomsen. Bioresour. Technol., 100 (3), 1186 (2009). DOI: 10.1016/j.biortech.2008.07.067
  24. V.A. Chesnokov, E.N. Bazyrina, T.M. Bushueva, N.L. Ilyinskaya. Vyrashchivanie rastenij bez pochvy (Izd-vo Len. un-ta, L., 1960) (in Russian)
  25. GOST 9517-94 (ISO 5073-85) " Solid fuel. Methods for determination of humic acids yield"\
  26. D.S. Orlov, L.A. Grishina. Praktikum po himii gumusa: Uchebnoe posobie dlya studentov-pochvovedov universitetov i sel'skohozyajstvennyh institutov (Izd-vo Mosk. un-ta, M., 1981) (in Russian)
  27. L.T. Shirshova, D.A. Gilichinsky, N.V. Ostroumova, A.M. Ermolaev. Kriosfera Zemli, 19 (4), 107 (2015) (in Russian)
  28. P. Janov s, S. Kv r zrenecka, L. Madronova. Reactive Functional Polymers, 68, 242 (2008). DOI: 10.1016/j.reactfunctpolym.2007.09.005
  29. P.A. Campitelli, M.I. Velasco, S.B. Ceppi. Talanta, 69, 1234 (2006). DOI: 10.1016/j.talanta.2005.12.048
  30. J. Novak, J. Kozler, P. Janos, J. Cezikova, V. Tokarova, L. Madronova. Reactive Functional Polymers, 47, 101 (2001). DOI: 10.1016/S1381-5148(00)00076-6

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru