Nanoparticles [Ru(dipy)_3]2+ @ SiO2 as thermosensors and probes for luminescence tomography of biological samples
A.V. Leontyev1, L.A. Nurtdinova 1, E.O. Mitushkin1, A.G. Shmelev1, D.K. Zharkov1, V.V. Andrianov1,2, L.N. Muranova2, Kh.L. Gainutdinov1,2, R.R. Zairov3, A.R. Khasieva, A.R. Mustafina, V.G. Nikiforov1
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
2Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
3Alexander Butlerov Institute of Chemistry, KFU, Kazan, Russia
Email: vgnik@mail.ru

PDF
New luminescent nanomaterials attract tremendous interest, and in this work, silicon dioxide SiO2 nanoparticles of 55 nm size containing tris(2,2'-bipyridyl) ruthenium (II) complexes [Ru(dipy)_3]2+ are tested as nanoprobes for biomedical applications. We have shown that calibration of the spectral parameters of the luminescent response based on the ratiometric method allows the use of nanoparticles in biological media as thermosensors with an accuracy of ±2oC in the biologically significant temperature range of 20-50oC. In addition, a fluorescent tomography method has been proposed and implemented. As a result, a three-dimensional model of the surface of the grape snails nervous system was obtained with a resolution of 10 μm. This allowed us to perform a demonstration experiment - remote measurement of the local temperature of a selected area on the surface of a neuron. Keywords: nanoluminophores, luminescent nanothermometers, nanosized bioprobes, temperature sensitivity, ratiometric method, bio-imaging, luminescent tomography.
  1. C.D.S. Brites, A. Millan, L.D. Carlos. Lanthanides in Luminescent Thermometry (Elsevier, 2016)
  2. C.D.S. Brites, S. Balabhadra, L.D. Carlos. Adv. Opt. Mater., 7 (5), 1801239 (2019). DOI: 10.1002/adom.201801239
  3. D. Wencel, T. Abel, C. McDonagh. Analyt. Chem., 86, 15 (2014). DOI: 10.1021/ac4035168
  4. S. Radun, H.R. Tschiche, D. Moldenhauer, U. Resch-Genger. Sens. Actuators. B., 251, 490 (2017). DOI: 10.1016/j.snb.2017.05.080
  5. Y. Choi, L. Kotthoff, L. Olejko, U. Resch-Gender, I. Bald. ACS Appl. Mater. Interfaces., 10 (27), 23295 (2018). DOI: 10.1021/acsami.8b03585
  6. A.G. Shmelev, D.K. Zharkov,A.V. Leontyev,V.G. Nikiforov,D.N. Petrov, M.F. Krylov, J.E. Clavijo, V.S. Lobkov.Bull. Russ. Acad. Sci. Phys., 86 (12), 1463 (2022). DOI: 10.3103/S1062873822120243
  7. A.G. Shmelev,V.G. Nikiforov, D.K. Zharkov,V.V. Andrianov,L.N. Muranova,A.V. Leontyev, Kh.L. Gainutdinov, V.S. Lobkov,M.H. Alkahtani, P.R. Hemmer. Bull. Russ. Acad. Sci. Phys., 84 (12) 1439 (2020). DOI: 10.3103/S1062873820120357
  8. D.K. Zharkov,E.O. Mityushkin, A.V. Leontiev,L.A. Nurtdinova,A.G. Shmelev,N.M. Lyadov, A.V. Pashkevich,A.P. Saiko, O.K. Khasanov,V.G. Nikiforov. Bull. Russ. Acad. Sci. Phys., 87, 1817 (2023). DOI: 10.1134/S1062873823704191
  9. P. Lu, J. Ai. Talanta Open., 8, 100248 (2023). DOI: 10.1016/j.talo.2023.100248
  10. J.V. Jun, D.M. Chenoweth, E.J. Petersson. Org. Biomol. Chem., 18 (30), 5747 (2020). DOI: 10.1039/d0ob01131b
  11. J.S. Donner, S.A. Thompson, M.P. Kreuzer, G. Baffou, R. Quidant. Nano Lett., 12 (4), 2107 (2012). DOI: 10.1021/nl300389y
  12. S. Kiyonaka, T. Kajimoto, R. Sakaguchi, D. Shinmi, M. Omatsu-Kanbe, H. Matsuura, H. Imamura, T. Yoshizaki, I. Hamachi, T. Morii,Y. Mori. Nature Meth., 10, 1312 (2013). DOI: 10.1038/nmeth.2690
  13. J. Yang, H. Yang, L. Lin. ACS Nano, 5, 5067 (2011). DOI: 10.1021/nn201142f
  14. L.M. Maestro, E.M. Rodriguez, F.S. Rodriguez, M.C. Iglesias-de la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J.A. Capobianco, J.G. Sole. Nano Lett., 10, 5109 (2010). DOI: 10.1021/nl1036098
  15. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin. Nature, 500, 54 (2013). DOI: 10.1038/nature12373
  16. L. Shang, F. Stockmar, N. Azadfar, G.U. Nienhaus. Angew. Chem. Int. Ed., 52, 11154 (2013). DOI: 10.1002/anie.201306366
  17. S. Arai, S.-C. Lee, D. Zhai, M. Suzuki, Y.T. Chang. Sci. Reports, 4, 6701 (2014). DOI: 10.1038/srep06701
  18. S. Arai, M. Suzuki, S.J. Park, J.S. Yoo, L. Wang, N.-Y. Kang, H.-H. Ha, Y.-T. Chang. Chem. Commun., 51, 8044 (2015). DOI: 10.1039/C5CC01088H
  19. R.R. Zairov, A.P. Dovzhenko, A.S. Sapunova, A.D. Voloshina, K.A. Sarkanich, A.G. Daminova, I.R. Nizameev, D.V. Lapaev, S.N. Sudakova, S.N. Podyachev, K.A. Petrov, A. Vomiero, A.R. Mustafina. Sci Rep., 10 (1), 20541 (2020). DOI: 10.1038/s41598-020-77512-1
  20. T. Tsuji, S. Yoshida, A. Yoshida, S. Uchiyama. Analyt. Chem., 85, 9815 (2013). DOI: 10.1021/ac402128f
  21. T. Hayashi, N. Fukuda, S. Uchiyama, N. Inada. PLoS ONE., 10 (2), e0117677 (2015). DOI: 10.1371/journal.pone.0117677
  22. P. Li, M. Jia, G. Liu, A. Zhang, Z. Sun, Z. Fu. ACS Appl. Bio Mater., 2 (4), 1732 (2019). DOI: 10.1021/acsabm.9b00115
  23. H.S. Lahoti, S.D. Jogdand. Cureus, 14 (9), e28923 (2022). DOI: 10.7759/cureus.28923
  24. P. Bon, L. Cognet. ACS Photonics, 9 (8), 2538 (2022). DOI: 10.1021/acsphotonics.2c00606
  25. J. Wallyn, N. Anton, S. Akram, T.F. Vandamme. Pharm Res., 36 (6), 78 (2019). DOI: 10.1007/s11095-019-2608-5
  26. S. Fedorenko, A. Stepanov, G. Sibgatullina, D. Samigullin, A. Mukhitov, K. Petrov, R. Mendes, M. Rummeli, L. Giebeler, B. Weise, T. Gemming,I. Nizameev, K. Kholin, A. Mustafina. Nanoscale, 11 (34), 16103 (2019). DOI: 10.1039/C9NR05071J
  27. P.M. Balaban. Neurosci. Biobehav. Rev., 26 (5), 597 (2002). DOI: 10.1016/S0149-7634(02)00022-2
  28. V.V. Andrianov, T.K. Bogodvid, I.B. Deryabina, A.N. Golovchenko, L.N. Muranova, R.R. Tagirova, A.K. Vinarskaya, K.L. Gainutdinov. Front. Behav. Neurosci., 9, 1 (2015). DOI: 10.3389/fnbeh.2015.00279
  29. A.R. Mustafina, S.V. Fedorenko, O.D. Konovalova, A.Yu. Menshikova, N.N. Shevchenko, S.E. Soloveva, A.I. Konovalov, I.S. Antipin. Langmuir, 25 (5), 3146 (2009). DOI: 10.1021/la8032572
  30. S.V. Fedorenko, O.D. Bochkova, A.R. Mustafina, V.A. Burilov, M.K. Kadirov, C.V. Holin, I.R. Nizameev, V.V. Skripacheva, A.Y. Menshikova, I.S. Antipin, A.I. Konovalov. J. Phys. Chem. C, 114 (14), 6350 (2010). DOI: 10.1021/jp912225u
  31. V. Balzani, G. Bergamini, S. Campagna, F. Puntoriero. Photochemistry and Photophysics of Coordination Compounds (Springer, Berlin, Heidelberg, 2007)
  32. N.D. McClenaghan, Y. Leydet, B. Maubert, M.T. Indelli, S. Campagna. Coord. Chem. Rev., 249, 1336 (2005). DOI: 10.1016/j.ccr.2004.12.017
  33. D.K. Zharkov, A.V. Leontyev, A.G. Shmelev, L.A. Nurtdinova, A.P. Chuklanov, N.I. Nurgazizov, V.G. Nikiforov. Micromachines, 14, 1075 (2023). DOI: 10.3390/mi14051075
  34. A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, P. Ugliengo. Chem. Rev., 113 (6), 4216 (2013). DOI: 10.1021/cr3003054

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru