Properties of bioelectrochemical systems based on electrogenic processes in the root environment of lettuce during their scaling
Kuleshova T. E. 1, Ezerina E.M. 1, Vertebny V. V. 1, Khomyakov Yu. V. 1, Panova G. G. 1
1Agrophysical Research Institute, St. Petersburg, Russia
Email: www.piter.ru@bk.ru, lehzerina@yandex.ru, verteb22@mail.ru, himlabafi@yandex.ru, gaiane@inbox.ru

PDF
The work is devoted to the study of the bioelectrochemical systems (BES) properties when they are scaled by connecting in series. The lettuce variety Typhoon was chosen as the plant object, and the cultivation technology was panoponics. The resulting average voltage of one cell was 102 mV, three and twenty series-connected 197 mV and 1782 mV, respectively, which is 36% and 13% lower than the expected values. Analysis of the potential difference created in each cell in a chain of several series-connected BES showed significant unevenness between the indicators and even the presence of negative polarity. A decrease in the total power when creating batteries from BES has been noted by many researchers and is associated with the heterogeneity of the elements included in the circuit and the presence of reverse voltages. The most effective way to increase the power characteristics of BES is to accumulate the resulting bioenergy using ionistors. Keywords: plant-microbial fuel cell, series connection, green energy, panoponics, ionistors.
  1. B.E. Logan. Microbial Fuel Cells (JohnWiley\&Sons, NY., 2008), DOI: 10.1002/9780470258590
  2. A.J. McCormick, P. Bombelli, R.W. Bradley, R. Thorne, T. Wenzel, C.J. Howe. Energy Environmental Sci., 8 (4), 1092 (2015). DOI: 10.1039/C4EE03875D
  3. D.P. Strik, H.V.M. Hamelers, J.F. Snel, C.J. Buisman. J. Energy Research, 32 (9), 870 (2008). DOI: 10.1002/er.1397
  4. D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven. Bioresource Technol., 101 (6), 1533 (2010). DOI: 10.1016/j.biortech.2009.10.017
  5. A.N. Ghadge, M. Sreemannarayana, N. Duteanu, M.M. Ghangrekar. J. Electrochem. Sci. Eng., 4, 315 (2014). DOI: 10.5599/jese.2014.0047
  6. X. Li, N. Zhu, Y. Wang, P. Li, P. Wu, J. Wu. Bioresour Technol., 128, 454 (2013). DOI: 10.1016/j.biortech.2012.10.053
  7. N. Bourdakos, E. Marsili, R. Mahadevan. Biotechnol. Bioeng, 111, 709 (2014). DOI: 10.1002/bit.25137
  8. P.J. Sarma, K. Mohanty. An Insight into Plant Microbial Fuel Cells. In R.N. Krishnaraj, R.K. Sani (ed.). Bioelectrochemical interface engineering (John Wiley \& Sons, Inc., 2020), ch. 8, p. 137-148. DOI: 10.1002/9781119611103.ch8
  9. R.A. Timmers, D.P. Strik, H.V. Hamelers, C.J.N. Buisman. Appl. Microbiol. Biotechnol., 86, 973 (2010). DOI: 10.1007/s0025301024407
  10. K.R.S. Pamintuan, C.S.A. Reyes, D.K.O. Lat. E3S Web of Conf. --- EDP Sci., 181, 01007 (2020). DOI: 10.1051/e3sconf/202018101007
  11. P. Aelterman, S. Shah, R. Prasad. Methodology Technol., 40 (17), 5181 (2006). DOI: 10.2174/1874070702115010131
  12. M. Helder, D.P. Strik, H.V.M. Hamelers, C.J.N. Buisman. Biotechnol. Biofuels, 5 (1), 1 (2012). DOI: 10.1186/1754-6834-5-70
  13. A.N. Ghadge, M.M. Ghangrekar, K. Scott. J. Renew Sustain Energy, 8 (4), 44302 (2016). DOI: 10.1063/1.4961587
  14. E.D. Penteado, C.M. Fernandez-Marchante, M. Zaiat, E.R. Gonzalez, M.A. Rodrigo, Brazilian. J. Chem. Eng., 35, 141 (2018). DOI: 10.1590/0104-6632.20180351S20160411
  15. D.A. Jadhav, A.K. Mungray, A. Arkatkar, S.S. Kumar. Sustainable Energy Technol. Assessments, 45, 101226 (2021). DOI: 10.1016/j.seta.2021.101226
  16. S. Cheng, B.E. Logan. Bioresour. Technol., 102, 4468 (2011). DOI: 10.1016/j.biortech.2010.12.104
  17. A.N. Ghadge, D.A. Jadhav, M.M. Ghangrekar. Environ. Prog. Sustain. Energy, 35 (6), 1809 (2016). DOI: 10.1002/ep.12403
  18. K.R.S. Pamintuan, A.M.C. Katipunan, P. Ann. O. Palaganas, A.R. Caparanga. Intern. J. Renewable Energy Development, 9 (3), 439 (2020). DOI: 10.14710/ijred.2020.29898
  19. E.B. Estrada-Arriaga, Y. Guillen-Alonso, C. Morales-Morales, L.E. Garci a-Sanchez, O. Bahena-Bahena, O. GuadarramaPerez, F. Loyola-Morales, Water Sci. Technol., 76 (3), 683 (2017). DOI: 10.2166/wst.2017.253
  20. A. Gurung, S.E. Oh. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 34 (17), 1569 (2012). DOI: 10.1080/15567036.2012.660561
  21. G.G. Panova, O.R. Udalova, E.V. Kanash, A.S. Galushko, A.A. Kochetov, N.S. Priyatkin, M.V. Arkhipov, I.N. Chernousov. Tech. Phys., 65 (10), 1562 (2020). DOI: 10.1134/S1063784220100163
  22. V.A. Chesnokov, E.N. Bazyrina, T.M. Bushueva. Vyrashchivanie rastenij bez pochvy (Izd-vo LGU, L., 1960) (in Russian)
  23. T.E. Kuleshova, A.V. Bushlyakova, N.R. Gall. Technical Physics Letters, DOI: 10.21883/PJTF.2019.05.47387.17541
  24. T.E. Kuleshova, G.G. Panova, N.R. Gall, A.S. Galushko. Tech. Phys. Lett., 48 (4), 66 (2022). DOI: 10.21883/TPL.2022.04.53176.19066
  25. T.E. Kuleshova, N.R. Gall, A.S. Galushko, G.G. Panova. 45(3), 190 (2019). DOI: 10.21883/JTF.2021.03.50531.185-20
  26. A. Mukherjee, R. Patel, P. Zaveri, M.T. Shah, N.S. Munshi. Lett. Appl. Microbiol., 75 (785), 795 (2021). DOI: 10.1111/lam.13612
  27. M. Sugnaux, C. Savy, C.P. Cachelin, G. Hugenin, F. Fischer. Bioresour. Technol., 238, 519 (2017). DOI: 10.1016/j.biortech.2017.04.072
  28. C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos. J. Power Sources, 356, 225 (2017). DOI: 10.1016/j.jpowsour.2017.03.109
  29. S. Chen, S.A. Patil, R.K. Brown, U. Schroder. Appl. Energy, 233- 234, 15 (2019). DOI: 10.1016/j.apenergy.2018.10.015
  30. D.A. Jadhav, PhD Dissertation (Kharagpur, Indian Institute of Technology Kharagpur, 2017)
  31. B. Liu, Y. Lei, B. Li. Biosens Bioelectron., 62, 308 (2014). DOI: 10.1016/j.bios.2014.06.051
  32. A. Kaur, J. Rae, I. Michie, R.M. Dinsdale, A.J. Guwy, G.C. Premier. Biosens. Bioelectron., 47, 50 (2013). DOI: 10.1016/j.bios.2013.02.033
  33. I. Rusyn, O. Medvediev. SSRN, [Preprint] (2022). DOI: 10.2139/ssrn.4201005
  34. J.C. Gomora-Hernandez, J.H. Serment-Guerrero, M.C. Carreno-de-Leon, N. Flores-Alamo. Rev. Mex. Ing. Quim., 19 (1), 227 (2020). DOI: 10.24275/rmiq/IA542
  35. W. Apollon, L.L. Valera-Montero, C. Perales-Segovia, V.A. Maldonado-Ruelas, R.A. Ortiz-Medina, J.F. Gomez-Leyva, M.A. Vazquez-Gutierrez, S. Flores-Beni tez, S.K. Kamaraj. Sustain Energy Technol. Assess, 49, 101730 (2022). DOI: 10.1016/j.seta.2021.101730
  36. G.G. Panova, A.V. Teplyakov, A.B. Novak, M.A. Levinskikh, O.R. Udalova, G.V. Mirskaya, Yu.V. Khomyakov, D.M. Shved, E.A. Ilyin, T.E. Kuleshova, E.V. Kanash, Yu.V. Chesnokov. Agronomy, 13 (12), 3038 (2023). DOI: 10.3390/agronomy13123038
  37. I.A. Ieropoulos, J. Greenman, C. Melhuish, I. Horsfield. Chem. Sus. Chem., 5, 1020 (2012). DOI: 10.1002/cssc.201200283
  38. S. Wilkinson. Aut. Robots, 9, 99 (2000)
  39. C. Melhuish, I. Ieropoulos, J. Greenman. Aut. Robots, 21, 187 (2006). DOI: 10.1007/s10514-006-6574-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru