Synthesis of ZnO epitaxial films at room temperature with high growth rates by direct current magnetron sputtering
Ismailov A. M.
1, Guidalaeva N. A.
1, Muslimov A.E.
2, Rabadanov M. R.
1, Rabadanov M. Kh.
11Dagestan State University, Makhachkala, Dagestan Republic, Russia
2Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: egdada@mail.ru, taiysiy@yandex.ru, amuslimov@mail.ru, r777mr@mail.ru, rab_mur@mail.ru
ZnO ceramic target (((0001)ZnO||(1120)Al2O3)) epitaxial films with record-high growth rates (7 nm/s) and low epitaxy temperatures (35oC) were obtained on sapphire substrates by direct current magnetron sputtering in an oxygen environment. It was found that an optimal substrate location in the magnetron plasma region, corresponding to a floating potential value of 9-12 V on the substrate, is a necessary condition for the growth of ZnO epitaxial films. Keywords: ZnO, epitaxial films, magnetron sputtering method, film growth rate, sapphire substrates.
- F. Hadj-Larbi, R. Serhane, Sensors Actuators A, 292, 169 (2019). DOI: 10.1016/j.sna.2019.03.037
- W. Zhang, D. Jiang, M. Zhao, Y. Duan, X. Zhou, X. Yang, C. Shan, J. Qin, S. Gao, Q. Liang, J. Hou, J. Appl. Phys., 125, 024502 (2019). DOI: 10.1063/1.5057371
- X.-L. Lu, X.-B. Guo, F.-C. Su, Z. Su, W.-H. Qiu, Y.-P. Jiang, W.-H. Li, Z.-H. Tang, X.-G. Tang, J. Appl. Phys., 133, 075301 (2023). DOI: 10.1063/5.0133534
- K. Natu, M. Laad, B. Ghule, A. Shalu, J. Appl. Phys., 134, 190701 (2023). DOI: 10.1063/5.0169308
- R. Triboulet, Prog. Cryst. Growth Charact. Mater., 60, 1 (2014). DOI: 10.1016/j.pcrysgrow.2013.12.001
- P. Scajev, S. Miasojedovas, M. Mazuronyte, L. Chang, M.C. Chou, J. Appl. Phys., 132, 144501 (2022). DOI: 10.1063/5.0108890
- J. Wang, P. Yang, Vacuum, 220, 112844 (2024). DOI: 10.1016/j.vacuum.2023.112844
- P. Gnanasambandan, N. Adjeroud, R. Leturcq, J. Vac. Sci. Technol. A, 40, 062413 (2022). DOI: 10.1116/6.0001925
- T.A. Heuser, C.A. Chapin, M.A. Holliday, Y. Wang, D.G. Senesky, J. Appl. Phys., 131, 155701 (2022). DOI: 10.1063/5.0077210
- R. Triboulet, J. Perriere, Prog. Cryst. Growth Charact. Mater., 47, 65 (2003). DOI: 10.1016/j.pcrysgrow.2005.01.003
- I.-S. Kim, S.-H. Jeong, S.S. Kim, B.-T. Lee, Semicond. Sci. Technol., 19, L29 (2004). DOI: 10.1088/0268-1242/19/3/L06
- K.C. Ruthe, D.J. Cohen, S.A. Barnett, J. Vac. Sci. Technol. A, 22, 2446 (2004). DOI: 10.1116/1.1807394
- K. Kuwahara, N. Itagaki, K. Nakahara, D. Yamashita, G. Uchida, K. Kamataki, K. Koga, M. Shiratani, Thin Solid Films, 520, 4674 (2012). DOI: 10.1016/j.tsf.2011.10.136
- S.W. Shin, G.L. Agawane, I.Y. Kim, Y.B. Kwon, I.O. Jung, M.G. Gang, A.V. Moholkar, J.-H. Moon, J.H. Kim, J.Y. Lee, Appl. Surf. Sci., 258, 5073 (2012). DOI: 10.1016/j.apsusc.2012.01.109
- S.H. Seo, H.C. Kang, Mater. Lett., 98, 131 (2013). DOI: 10.1016/j.matlet.2013.01.126
- H.N. Riise, V.S. Olsen, A. Azarov, A. Galeckas, T.N. Sky, B.G. Svensson, E. Monakhov, Thin Solid Films, 601, 18 (2016). DOI: 10.1016/j.tsf.2015.09.043
- A. Akhmedov, A. Abduev, E. Murliev, A. Asvarov, A. Muslimov, V. Kanevsky, Materials, 14, 6859 (2021). DOI: 10.3390/ma14226859
- F. Arab, F. Kanouni, R. Serhane, Y. Pennec, Mater. Today Commun., 38, 107719 (2024). DOI: 10.1016/j.mtcomm.2023.107719
- M.Z. Aslam, H. Zhang, V.S. Sreejith, M. Naghdi, S. Ju, Measurement, 222, 113657 (2023). DOI: 10.1016/j.measurement.2023.113657
- G. Fan, Y. Li, C. Hu, L. Lei, D. Zhao, H. Li, Z. Zhen, Opt. Laser Technol., 63, 62 (2014). DOI: 10.1016/j.optlastec.2014.04.001
- T.D. Shermergor, N.N. Strel'tsova, Plenochnye p'ezoelektriki (Radio i Svyaz', M., 1986) (in Russian)
- A.M. Ismailov, L.L. Emiraslanova, M.Kh. Rabadanov, M.R. Rabadanov, I.Sh. Aliev, Tech. Phys. Lett., 44, 528 (2018). DOI: 10.1134/S1063785018060202.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.