Features of cavitation initiated on a laser heating element near a solid flat surface
Chudnovskii V.M.1, Guzev M.A.1, Vassilevski Yu. V.2, Dats E.P.1, Kulik A.V.1
1Institute for Applied Mathematics, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
2Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
Email: datsep@gmail.com

PDF
The effect of a flat solid boundary on the dynamics of a cavitation steam bubble arising from the boiling of water with subcooling on a laser heating element, accompanied by the generation of jets, is investigated. The boiling of water is caused by the absorption of continuous laser radiation with a wavelength of λ=1.47 μm in the vicinity of the tip of an optical fiber immersed in water. Using high-speed video filming, it is established that the presence of a solid flat surface near the laser heating element (the tip of the optical fiber) leads to a rotation of the generated jet towards the surface, forming an angle between the direction of jet propagation and the plane of the surface. This angle determines the degree of impact of the jet front on the flat boundary and depends on the distance from the tip of the optical fiber to the boundary - a flat solid surface. Keywords: laser, cavitation, boiling, optical fiber.
  1. G. Strotos, Q. Zeng, S.R. Gonzalez-Avila, A. Theodorakakos, M. Gavaises, C.-D Ohl, Langmuir, 34 (22), 6428 (2018). DOI: 10.1021/acs.langmuir.8b01274
  2. W. Song, M.H. Hong, B.S. Luk'yanchuk, T.C. Chong, J. Appl. Phys., 95 (6), 2952 (2004). DOI: 10.1063/1.1650531
  3. C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, D. Lohse, Appl. Phys. Lett., 89 (7), 074102 (2006). DOI: 10.1063/1.2337506
  4. J.L. Compton, A.N. Hellman, V. Venugopalan, Biophys. J., 105 (9), 2221 (2013). DOI: 10.1016/j.bpj.2013.09.027
  5. K.R. Rau, A. Guerra, A. Vogel, V. Venugopalan, Appl. Phys. Lett., 84 (15), 2940 (2004). DOI: 10.1063/1.1705728
  6. S.R. Gonzalez-Avila, A.C. van Blokland, Q. Zeng, C.-D. Ohl, J. Fluid Mech., 884, A23 (2020). DOI: 10.1017/jfm.2019.938
  7. P. Xu, B. Li, Z. Ren, S. Liu, Z. Zuo, Phys. Rev. Fluids, 8 (8), 083601 (2023). DOI: 10.1103/PhysRevFluids.8.083601
  8. F. Reuter, C.-D. Ohl, Appl. Phys. Lett., 118 (12), 134103 (2021). DOI: 10.1063/5.0045705
  9. V.M. Chudnovskii, A.A. Levin, V.I. Yusupov, M.A. Guzev, A.A. Chernov, Int. J. Heat Mass Transfer, 150, 119286 (2020). DOI: 10.1016/j.ijheatmasstransfer.2019.119286
  10. R.V. Fursenko, V.M. Chudnovskii, S.S. Minaev, J. Okajima, Int. J. Heat Mass Transfer, 163, 120420 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.1204200017-9310
  11. E.P. Dats, A.V. Kulik, M.A. Guzev, V.M. Chudnovskii, Tech. Phys. Lett., 49 (8), 73 (2023). DOI: 10.61011/TPL.2023.08.56694.19607
  12. T.P. Adamova, V.M. Chudnovsky, D.S. Elistratov, Tech. Phys. Lett., 48 (1), 16 (2022). DOI: 10.21883/TPL.2022.01.52459.18991.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru