Model of aqueous salt solution droplet evaporation before the start of crystallization
Levashov V. Yu.1, Kryukov A.P.1,2, Dombrovsky L.A.3,4
1Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
2National Research University «Moscow Power Engineering Institute», Moscow, Russia
3Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
4University of Tyumen, Tyumen, Russia
Email: vyl69@mail.ru

PDF
The paper proposes an approximate method for calculating the size and temperature of spherical droplets of aqueous salt solution (NaCl), which is applicable prior to the start of salt crystallization. The calculation results are in agreement with the results obtained via a more accurate model. Keywords: evaporation, droplet, salt solution.
  1. A.V. Kozyrev, A.G. Sitnikov, Phys. Usp., 44 (7), 725 (2001). DOI: 10.1070/PU2001v044n07ABEH000953
  2. S.S. Sazhin, Droplets and sprays (Springer, 2014). DOI: 10.1007/978-1-4471-6386-2
  3. N.M. Kortsenshteyn, Tech. Phys Lett., 48, 169 (2022). DOI: 10.1134/S1063785022040204
  4. L.A. Dombrovsky, V.Yu. Levashov, A.P. Kryukov, S. Dembele, J.X. Wen, Int. J. Therm. Sci., 152, 106299 (2020). DOI: 10.1016/j.ijthermalsci.2020.106299
  5. L.A. Dombrovsky, S. Dembele, Comput. Therm. Sci., 14 (4), 1 (2022). DOI: 10.1615/ComputThermalScien.2022041314
  6. L. Liu, K. Zhang, S. Kong, X. Wang, L. Yong, M. Mi, Eur. Phys. J. E, 43, 36 (2020). DOI: 10.1140/epje/i2020-11956-9
  7. S.Y. Misyura, Sci. Rep., 7, 14759 (2017). DOI: 10.1038/s41598-017-15175-1
  8. J.M. Baumann, M.S. Adam, J.D. Wood, Annu. Rev. Chem. Biomol. Eng., 12, 217 (2021). DOI: 10.1146/annurev-chembioeng-091720-034106
  9. K. Samborska, S. Poozesh, A. Baranska, M. Sobulska, A. Jedlinska, C. Arpagaus, N. Malekjani, S.M. Jafari, J. Food Eng., 321, 110960 (2022). DOI: 10.1016/j.jfoodeng.2022.110960
  10. V.Yu. Borodulin, V.N. Letushko, M.I. Nizovtsev, A.N. Sterlyagov, Int. J. Heat Mass Transfer, 109, 609 (2017). DOI: 10.1016/j.ijheatmasstransfer.2017.02.042
  11. V.Yu. Levashov, A.P. Kryukov, Colloid J., 79 (5), 647 (2017). DOI: 10.1134/S1061933X1705009X
  12. L.A. Dombrovsky, M. Frenkel, I. Legchenkova, E. Bormashenko, Int. J. Heat Mass Transfer, 158, 120053 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120053
  13. M. Mezhericher, A. Levy, I. Borde, Chem. Eng. Sci., 63 (1), 12 (2008). DOI: 10.1016/j.ces.2007.08.052
  14. R. de Souza Lima, M.-I. Re, P. Arlabosse, Powder Technol., 359, 161 (2020). DOI: 10.1016/j.powtec.2019.09.052
  15. M. Rezaei, R.R. Netz, Phys. Fluids, 33 (9), 091901 (2021). DOI: 10.1063/5.0060080
  16. V.P. Isachenko, Teploobmen pri kondensatsii (Energiya, M., 1997). (in Russian)
  17. D. Camuffo, Microclimate for cultural heritage, 3rd ed. (Elsevier, 2019), p. 61--71. DOI: 10.1016/b978-0-444-64106-9.00004-3
  18. P. Bharmoria, H. Gupta, V.P. Mohandas, P.K. Ghosh, A. Kumar, J. Phys. Chem. B, 116 (38), 11712 (2012). DOI: 10.1021/jp307261g

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru