Wear of the probe tip depending on the interaction regimes with the sample surface at operating in the amplitude-modulation atomic force microscopy mode
Novak A. V.
1,2, Novak V. R.
3, Rumyantsev A. V.
11National Research University of Electronic Technology, Zelenograd, Moscow, Russia
2JSC «Angstrem», Moscow, Russian Federation
3NT-MDT Spectrum Instruments, Moscow, Russia
Email: novak-andrei@mail.ru, novak@ntmdt.ru, shiroc5@gmail.com
The dependence of probe tip wear on the regimes of force interaction with the sample surface at operating in the amplitude-modulation atomic force microscopy mode has been studied. It was found that in the regime of attractive forces, the wear of the tip is insignificant, in contrast to the regime of repulsive forces. Thus, after 10 scans of a hard, rough surface of polysilicon films with hemispherical grains (HSG-Si) in the attractive regime, the tip radius increased from 3 to 4 nm, and in the repulsive regime from 4 to 20 nm. An estimate was made of the dissipation energy for one oscillation period Edis, which was: 2.1 eV in the attractive regime, and 98 eV in the repulsive regime. Keywords: amplitude-modulation atomic force microscopy, probe tip wear, attractive force regime, repulsive force regime, dissipation energy.
- J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Appl. Phys. Lett., 72, 2613 (1998). DOI: 10.1063/1.121434
- R. Garci a, A. San Paulo, Phys. Rev. B, 60, 4961 (1999). DOI: 10.1103/PhysRevB.60.4961
- A. San Paulo, R. Garci a, Phys. Rev. B, 64, 193411 (2001). DOI: 10.1103/PhysRevB.64.193411
- R. Garci a, R. Perez, Surf. Sci. Rep., 47, 197 (2002). DOI: 10.1016/S0167-5729(02)00077-8
- S. Huang, Y. Tian, T. Wang, Sensors, 23, 4084 (2023). DOI: 10.3390/s23084084
- C. Su, L. Huang, K. Kjoller, K. Babcock, Ultramicroscopy, 97, 135 (2003). DOI: 10.1016/S0304-3991(03)00038-X
- V. Vahdat, D.S. Grierson, K.T. Turner, R.W. Carpick, ACS Nano, 7, 3221 (2013). DOI: 10.1021/nn403435z
- B. Xue, Y. Yan, Z. Hu, X. Zhao, Scanning, 36, 263 (2014). DOI: 10.1002/sca.21099
- A.V. Novak, V.R. Novak, A.V. Rumyantsev, Izv. Vyssh. Uchebn. Zaved., Elektron., 26 (3-4), 234 (2021). DOI: 10.24151/1561-5405-2021-26-3-4-234-245
- A.V. Novak, V.R. Novak, J. Surf. Investig., 10, 949 (2016). DOI: 10.1134/S1027451016050104
- S. Santos, L. Guang, T. Souier, K. Gadelrab, M. Chiesa, T.P. Thomson, Rev. Sci. Instrum., 83, 043707 (2012). DOI: 10.1063/1.4704376
- A.G. Temiryazev, A.V. Krayev, M.P. Temiryazeva, Beilstein J. Nanotechnol., 12, 1226 (2021). DOI: 10.3762/bjnano.12.90
- N.F. Marti nez, R. Garci a, Nanotechnology, 17, S167 (2006). DOI: 10.1088/0957-4484/17/7/S11
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.