Metalorganic vapor phase epitaxy of AlN layers on a nanostructured AlN/Si(100) template synthesized by reactive magnetron sputtering
Bessolov V.N.1, Kompan M.E.1, Konenkova E.V1, Orlova T.A. 1, Rodin S.N.1, Solomnikova A.V.2
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: lena@triat.mail.ioffe.ru
The atomic force microscopy and Raman scattering methods were used to study AlN layers grown by metalorganic vapor phase epitaxy (MOCVD) on a Si(100) substrate, on the surface of which a symmetrical V-shaped nanostructure with an element size < 100 nm (NP-Si(100) substrate) and an AlN buffer layer obtained by the method of reactive magnetron sputtering (RMS). It is shown that during the formation of the buffer layer at the initial stage of growth, a transition from the symmetrical state of the structured substrate to the asymmetric state of the layer is carried out. It was found that the buffer layer grown by RMS is in a state of compression, and the layer grown by MOCVD has a lower amount of stretching than the AlN layer obtained directly on the NP-Si(100) substrate. It is assumed that such textural buffer layers after RMS deposition contain hexagonal and cubic phases of AlN. Keywords: aluminum nitride, nanostructured silicon substrate, reactive magnetron sputtering.
- M. Kneissl, T.-Y. Seong, J. Han, H. Amano. Nat. Photonics, 13, 233 (2019). DOI: 10.1038/s41566-019-0359-9
- Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, C. Sun. Micromachines, 11, 630 (2020). DOI: 10.3390/mi11070630
- M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, H. Yang. IEEE J. Sel. Top. Quantum Electron., 24, 1 (2018). DOI: 10.1109/JSTQE.2018.2815906
- Y. Huang, J. Liu, X. Sun, X. Zhan, Q. Sun, H. Gao, M. Feng, Y. Zhou, M. Ikeda, H. Yang. Cryst. Eng. Comm., 22, 1160 (2020). DOI: 10.1039/C9CE01677E
- Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, H. Yang. Light Sci. Appl., 7, 13 (2018). DOI: 10.1038/s41377-018-0008-y.eCollection 2018
- Z. Zhang, J. Yang, D.-G. Zhao, F. Liang, P. Chen, Z.-S. Liu. Chin. Phys. B, 32, 028101 (2023). DOI: 10.1088/1674-1056/ac6b2b
- T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 36, L382 (1997). DOI: 10.1143/JJAP.36.L382
- D. Rosales, B. Gil, T. Bretagnon, B. Guizal, F. Zhang, S. Okur, M. Monavarian, N. Izyumskaya, V. Avrutin, U. Ozgur, H. Morkoc, J.H. Leach. J. Appl. Phys., 115, 073510 (2014). DOI: 10.1063/1.4865959
- W.G. Scheibenzuber, U.T. Schwarz, R.G. Veprek, B. Witzigmann, A. Hangleiter. Phys. Rev. B, 80, 115320 (2009). DOI: 0.1103/PhysRevB.80.115320
- V.N. Bessolov, E.V. Konenkova. ZhTF, 93 (9), 1235 (2023) (in Russian). DOI: 10.21883/JTF.2023.09.56211.31-23
- Q. Feng, Y. Ai, Z. Liu, Z. Yu, K. Yang, B. Dong, B. Guo, Y. Zhang. Superlattices and Microstructures, 141, 106493 (2020). DOI: 10.1016/j.spmi.2020.106493
- T. Yamada, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano. Jpn. J. Appl. Phys., 52, 08JB16 (2013). DOI: 10.7567/JJAP.52.08JB16
- I.-S. Shin, J. Kim, D. Lee, D. Kim, Y. Park, E. Yoon. Jpn. J. Appl. Phys., 57, 060306 (2018). DOI: 10.7567/JJAP.57.060306
- V.N. Bessolov, E.V. Konenkova, S.N. Rodin, D.S. Kibalov, V.K. Smirnov. Semiconductors, 55 (4), 471 (2021). DOI: 10.1134/S1063782621040035
- V.N. Bessolov, N.D. Gruzinov, M.E. Kompan, V.N. Panteleev, S.N. Rodin, M.P. Shcheglov. Tech. Phys. Lett., 46 (4), 382 (2020). DOI: 10.1134/S1063785020040185
- V.N. Bessolov, E.V. Konenkova, T.A. Orlova S.N. Rodin, A.V. Solomnikova. Tech. Phys., 67 (5), 609 (2022). DOI: 10.21883/TP.2022.05.53677.12-22
- W. Zheng, R. Zheng, F. Huang, H. Wu, F. Li. Photon. Res., 3 (2), 38 (2015). DOI: 10.1364/prj.3.000038
- B. Riah, A. Ayad, J. Camus, M. Rammal, F. Boukari, L. Chekour, M.A. Djouadi, N. Rouag. Thin Solid Films, 655, 34 (2018). DOI: 10.1016/j.tsf.2018.03.076
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.