Structural and field emission properties of effective nanocomposite cathodes CNT@TiO2
Chumak M. A.1, Popov E. O.1, Filippov S. V.1, Kolosko A. G.1, E. V. Zhizhnik2, Koroleva A. V.2, Filatov L. A.3, Ezhov I. S.3, Maximov M. Y. 3
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: equilibrium2027@yandex.ru.
A comprehensive study of the composition and field emission properties of field emission cathodes based on CNT@TiO2 core-shell nanocomposites is presented. Coatings with arrays of vertical carbon nanotubes (CNTs) were produced by the plasma-chemical method on silicon substrates with a Ni catalyst, and thin layers of TiO2 were produced by subsequent atomic layer deposition. It was found that the work function of the coating material with the initial CNT array was 4.98 eV; for the case of CNT@TiO2, it took values of 4.29 and 3.82 eV for oxide thicknesses of 3 and 6 nm, respectively. The developed technique for comparing emission characteristics showed that a decrease in the work function of structures with CNT@TiO2 was accompanied by a decrease in local electric fields at the tips. A cathode with CNT@TiO2 arrays (6 nm) required the lowest electric field in the group of samples to ensure an emission current density of 1 mA/cm2 about 5·109 V/m. This is 1.6 times less than for a similar sample with an array of "pure" CNTs. The average values of the effective field enhancement coefficient tended to decrease when going from CNTs to CNTs@TiO2, probably due to an increase in the radius of curvature of tubular nanoparticles upon deposition of an additional layer. Modification with an oxide coating led to an increase in the effective emission area of the cathode. Keywords: field emission, nanocomposite, carbon nanotube array, TiO2 thin films, X-ray photoelectron spectroscopy, atomic layer deposition, plasma chemical deposition, work function.
- N.L. Rupesinghe, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga. J. Vacuum Sci. Technol. B, 21 (1), 338 (2003). DOI: 10.1116/1.1527635
- R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou. Appl. Phys. Lett., 76 (13), 1668 (2000). DOI: 10.1063/1.126130
- G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, J.P. Lu, O. Zhou. Appl. Phys. Lett., 81 (2), 355 (2002). DOI: 10.1063/1.1492305
- J.W. Jeong, J.W. Kim, J.T. Kang, S. Choi, S. Ahn, Y.H. Song. Nanotechnology, 24 (8), 085201 (2013). DOI: 10.1088/0957-4484/24/8/085201
- S.H. Heo, A. Ihsan, S.O. Cho. Appl. Phys. Lett., 90 (18), 183109 (2007). DOI: 10.1063/1.2735549
- S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho. Nanoscale Res. Lett., 7, 1 (2012). DOI: 10.1186/1556-276X-7-258
- N.S. Lee, D.S. Chung, J.H. Kang, H.Y. Kim, S.H. Park, Y.W. Jin, J.M. Kim. Jpn. J. Appl. Phys., 39 (12S), 7154 (2000). DOI: 10.1143/JJAP.39.7154
- K. Jiang. Industrial Applications Carbon Nanotubes, 101 (2017). DOI: 10.1016/B978-0-323-41481-4.00004-6
- W. Knapp, D. Schleussner, A.S. Baturin, I.N. Yeskin, E.P. Sheshin. Vacuum, 69 (1-3), 339 (2002). DOI: 10.1016/S0042-207X(02)00355-X
- E.P. Sheshin, A.Y. Kolodyazhnyj, N.N. Chadaev, A.O. Getman, M.I. Danilkin, D.I. Ozol. J. Vacuum Sci. Technol. B, 37 (3), 031213 (2019). DOI: 10.1116/1.5070108
- S.T. Yoo, J.Y. Lee, A. Rodiansyah, T.Y. Yune, K.C. Park. Current Appl. Phys., 28, 93 (2021). DOI: 10.1016/j.cap.2021.05.007
- Z. Wen, Y. Wu, Z. Zhang, S. Xu, S. Huang, Y. Li. Sensors and Actuators A: Physical, 103 (3), 301 (2003). DOI: 10.1016/S0924-4247(02)00392-8
- S. Kang, W. Qian, R. Liu, H. Yu, W. Zhu, X. Liao, F. Wang, W. Huang, Ch. Dong. Vacuum, 207, 111663 (2023). DOI: 10.1016/j.vacuum.2022.111663
- Y. Kanazawa, T. Oyama, K. Murakami, M. Takai. J. Vacuum Sci. Technol. B, 22 (3), 1342 (2004). DOI: 10.1116/1.1667518
- A. Sawada, M. Iriguchi, W.J. Zhao, C. Ochiai, M. Takai. J. Vacuum Sci. Technol. B, 21 (1), 362 (2003). DOI: 10.1116/1.1527597
- G. Chai, L. Chow, D. Zhou, S.R. Byahut. Carbon, 43 (10), 2083 (2005). DOI: 10.1016/j.carbon.2005.03.009
- D.H. Kim, C.D. Kim, H.R. Lee. Carbon, 42 (8-9), 1807 (2004). DOI: 10.1016/j.carbon.2004.03.015
- J.D. Hwang, K.F. Chen, L.H. Chan, Y.Y. Chang. Appl. Phys. Lett., 89 (3), 033103 (2006). DOI: 10.1063/1.2222337
- J.Y. Pan, C.C. Zhu, Y.L. Gao. Appl. Surf. Sci., 254 (13), 3787 (2008). DOI: 10.1016/j.apsusc.2007.12.002
- X. Yan, B.K. Tay, P. Miele. Carbon, 46 (5), 753 (2008). DOI: 10.1016/j.carbon.2008.01.027
- S. Chakrabarti, L. Pan, H. Tanaka, S. Hokushin, Y. Nakayama. Jpn. J. Appl. Phys., 46 (7R), 4364 (2007). DOI: 10.1143/JJAP.46.4364
- C. Yang, Y. Li-Gang, W. Ming-Sheng, Z. Qi-Feng, W. Jin-Lei. Chin. Phys. Lett., 22 (4), 911 (2005). DOI: 10.1088/0256-307X/22/4/037
- H.B. Lian, K.Y. Lee, K.Y. Chen, Y.S. Huang. Diamond and Related Materials, 18 (2-3), 541-543 (2009). DOI: 10.1016/j.diamond.2008.10.054
- C.A. Chen, K.Y. Lee, Y.M. Chen, J.G. Chi, S.S. Lin, Y.S. Huang. Vacuum, 84 (12), 1427 (2010). DOI: 10.1016/j.vacuum.2009.12.016
- M. Sreekanth, S. Ghosh, P. Srivastava. arXiv (2018). arXiv preprint. DOI: 10.48550/arXiv.1811.10951
- C.J. Yang, J.I. Park, Y.R. Cho. Adv. Eng. Mater., 9 (1-2), 88 (2007). DOI: 10.1002/adem.200600003
- Y.M. Chen, C.A. Chen, Y.S. Huang, K.Y. Lee, K.K. Tiong. Nanotechnology, 21 (3), 035702 (2009). DOI: 10.1088/0957-4484/21/3/035702
- Y.M. Chen, C.A. Chen, Y.S. Huang, K.Y. Lee, K.K. Tiong. J. Alloys and Compounds, 487 (1-2), 659 (2009). DOI: 10.1016/j.jallcom.2009.07.181
- Y. Il Song, C.M. Yang, L. Ku Kwac, H. Gun Kim, Y. Ahm Kim. Appl. Phys. Lett., 99 (15), 153115 (2011). DOI: 10.1063/1.3650471
- J. Xu, P. Xu, W. Ou-Yang, X. Chen, P. Guo, J. Li, X. Piao, M. Wang, Z. Sun. Appl. Phys. Lett., 106 (7), 073501 (2015). DOI: 10.1063/1.4909552
- M.M. Raza, M. Sadiq, S. Khan, M. Zulfequar, M. Husain, S. Husain, J. Ali. Diamond and Related Mater., 110, 108139 (2020). DOI: 10.1016/j.diamond.2020.108139
- P.H. Chen, Y.S. Huang, W.J. Su, K.Y. Lee, K.K. Tiong. Mater. Chem. Phys., 143 (3), 1378 (2014). DOI: 10.1016/j.matchemphys.2013.11.049
- R. Smoluchowski. Phys. Rev., 60 (9), 661 (1941). DOI: 10.1103/PhysRev.60.661
- W. Li, D.Y. Li. J. Chem. Phys., 122 (6), 064708 (2005). DOI: 10.1063/1.1849135
- R.W. Strayer, W. Mackie, L.W. Swanson. Surface Sci., 34 (2), 225 (1973). DOI: 10.1016/0039-6028(73)90117-9
- A. Jablonski, K. Wandelt. Surface Interface Analysis, 17 (9), 611 (1991). DOI: 10.1002/sia.740170902
- M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu. Adv. Functional Mater., 22 (21), 4557 (2012). DOI: 10.1002/adfm.201200615
- S. Lany, J. Osorio-Guillen, A. Zunger. Phys. Rev. B, 75 (24), 241203 (2007). DOI: 10.1103/PhysRevB.75.241203
- M.T. Greiner, M.G. Helander, Z.B. Wang, W.M. Tang, Z.H. Lu. J. Phys. Chem. C, 114 (46), 19777 (2010). DOI: 10.1021/jp108281m
- L. Filatov, P. Vishniakov, I. Ezhov, I. Gorbov, D. Nazarov, D. Olkhovskii, R. Kumar, S. Peng, G. He, V. Chernyavsky, M. Gushchina, M. Maximov. Mater. Lett., 353, 135250 (2023). DOI: 10.1016/j.matlet.2023.135250
- M.A. Chumak, A.A. Rokacheva, L.A. Filatov, A.G. Kolosko, S.V. Filippov, E.O. Popov. J. Phys.: Conf. Series. --- IOP Publishing, 2103 (1), 012110 (2021). DOI: 10.1088/1742-6596/2103/1/012110
- R. Schlaf, H. Murata, Z.H. Kafafi. J. Electron Spectr. Related Phenomena, 120 (1-3), 149 (2001). DOI: 10.1016/S0368-2048(01)00310-3
- E.O. Popov, A.G. Kolosko, S.V. Filippov, E.I. Terukov, R.M. Ryazanov, E.P. Kitsyuk. J. Vacuum Sci. Technol. B, 38 (4), 043203 (2020). DOI: 10.1116/6.0000072
- M. Scardamaglia, M. Amati, B. Llorente, P. Mudimela, J.F. Colomer, J. Ghijsen, C. Ewels, R. Snyders, L. Gregoratti, C. Bittencourt. Carbon, 77, 319 (2014). DOI: 10.1016/j.carbon.2014.05.035
- T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown. Carbon, 43 (1), 153 (2005). DOI: 10.1016/j.carbon.2004.08.033
- Y.M. Shulga, T. Ta-Chang, H. Chi-Chen, L. Shen-Chuan, V.E. Muradyan, N.F. Polyakova, L. Yong-Chien. Alternative Energy and Ecology, 10, 40 (2006)
- A. Kemelbay, A. Tikhonov, S. Aloni, T.R. Kuykendall. Nanomaterials, 9 (8), 1085 (2019). DOI: 10.3390/nano9081085
- A. Dobrzanska-Danikiewicz, D. ukowiec, J. Kubacki. J. Nanomaterials, 2016. DOI: 10.1155/2016/4942398
- X. Chen, L. Liu, Z. Liu, M.A. Marcus, W.C. Wang, N.A. Oyler, M.E. Grass, B. Mao, P.-A. Glans, P.Y. Yu, J. Guo, S.S. Mao. Scientific Reports, 3 (1), 1510 (2013). DOI: 10.1038/srep01510
- R. Kumari, P.K. Tyagi, N.K. Puri. Appl. Phys. A, 124, 1 (2018). DOI: 10.1007/s00339-018-1850-8
- A. Moya, N. Kemnade, M.R. Osorio, A. Cherevan, D. Granados, D. Eder, J.J. Vilatela. J. Mater. Chem. A, 5 (47), 24695 (2017). DOI: 10.1039/C7TA08074C
- J. Jhaveri. Interface Recombination in TiO2/Silicon Heterojunctions for Silicon Photovoltaic Applications (Doctoral dissertation, Princeton University, 2018)
- V.N. Shrednik. Field Emission Theory. (Chap. 6. In Unheated Cathodes; Elinson, M.I., Ed.; Sovietskoe Radio: M., Russia, 1974), p. 165-207. (In Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.