Structural and field emission properties of effective nanocomposite cathodes CNT@TiO2
Chumak M. A.1, Popov E. O.1, Filippov S. V.1, Kolosko A. G.1, E. V. Zhizhnik2, Koroleva A. V.2, Filatov L. A.3, Ezhov I. S.3, Maximov M. Y. 3
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: equilibrium2027@yandex.ru.

PDF
A comprehensive study of the composition and field emission properties of field emission cathodes based on CNT@TiO2 core-shell nanocomposites is presented. Coatings with arrays of vertical carbon nanotubes (CNTs) were produced by the plasma-chemical method on silicon substrates with a Ni catalyst, and thin layers of TiO2 were produced by subsequent atomic layer deposition. It was found that the work function of the coating material with the initial CNT array was 4.98 eV; for the case of CNT@TiO2, it took values of 4.29 and 3.82 eV for oxide thicknesses of 3 and 6 nm, respectively. The developed technique for comparing emission characteristics showed that a decrease in the work function of structures with CNT@TiO2 was accompanied by a decrease in local electric fields at the tips. A cathode with CNT@TiO2 arrays (6 nm) required the lowest electric field in the group of samples to ensure an emission current density of 1 mA/cm2 about 5·109 V/m. This is 1.6 times less than for a similar sample with an array of "pure" CNTs. The average values of the effective field enhancement coefficient tended to decrease when going from CNTs to CNTs@TiO2, probably due to an increase in the radius of curvature of tubular nanoparticles upon deposition of an additional layer. Modification with an oxide coating led to an increase in the effective emission area of the cathode. Keywords: field emission, nanocomposite, carbon nanotube array, TiO2 thin films, X-ray photoelectron spectroscopy, atomic layer deposition, plasma chemical deposition, work function.
  1. N.L. Rupesinghe, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga. J. Vacuum Sci. Technol. B, 21 (1), 338 (2003). DOI: 10.1116/1.1527635
  2. R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou. Appl. Phys. Lett., 76 (13), 1668 (2000). DOI: 10.1063/1.126130
  3. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, J.P. Lu, O. Zhou. Appl. Phys. Lett., 81 (2), 355 (2002). DOI: 10.1063/1.1492305
  4. J.W. Jeong, J.W. Kim, J.T. Kang, S. Choi, S. Ahn, Y.H. Song. Nanotechnology, 24 (8), 085201 (2013). DOI: 10.1088/0957-4484/24/8/085201
  5. S.H. Heo, A. Ihsan, S.O. Cho. Appl. Phys. Lett., 90 (18), 183109 (2007). DOI: 10.1063/1.2735549
  6. S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho. Nanoscale Res. Lett., 7, 1 (2012). DOI: 10.1186/1556-276X-7-258
  7. N.S. Lee, D.S. Chung, J.H. Kang, H.Y. Kim, S.H. Park, Y.W. Jin, J.M. Kim. Jpn. J. Appl. Phys., 39 (12S), 7154 (2000). DOI: 10.1143/JJAP.39.7154
  8. K. Jiang. Industrial Applications Carbon Nanotubes, 101 (2017). DOI: 10.1016/B978-0-323-41481-4.00004-6
  9. W. Knapp, D. Schleussner, A.S. Baturin, I.N. Yeskin, E.P. Sheshin. Vacuum, 69 (1-3), 339 (2002). DOI: 10.1016/S0042-207X(02)00355-X
  10. E.P. Sheshin, A.Y. Kolodyazhnyj, N.N. Chadaev, A.O. Getman, M.I. Danilkin, D.I. Ozol. J. Vacuum Sci. Technol. B, 37 (3), 031213 (2019). DOI: 10.1116/1.5070108
  11. S.T. Yoo, J.Y. Lee, A. Rodiansyah, T.Y. Yune, K.C. Park. Current Appl. Phys., 28, 93 (2021). DOI: 10.1016/j.cap.2021.05.007
  12. Z. Wen, Y. Wu, Z. Zhang, S. Xu, S. Huang, Y. Li. Sensors and Actuators A: Physical, 103 (3), 301 (2003). DOI: 10.1016/S0924-4247(02)00392-8
  13. S. Kang, W. Qian, R. Liu, H. Yu, W. Zhu, X. Liao, F. Wang, W. Huang, Ch. Dong. Vacuum, 207, 111663 (2023). DOI: 10.1016/j.vacuum.2022.111663
  14. Y. Kanazawa, T. Oyama, K. Murakami, M. Takai. J. Vacuum Sci. Technol. B, 22 (3), 1342 (2004). DOI: 10.1116/1.1667518
  15. A. Sawada, M. Iriguchi, W.J. Zhao, C. Ochiai, M. Takai. J. Vacuum Sci. Technol. B, 21 (1), 362 (2003). DOI: 10.1116/1.1527597
  16. G. Chai, L. Chow, D. Zhou, S.R. Byahut. Carbon, 43 (10), 2083 (2005). DOI: 10.1016/j.carbon.2005.03.009
  17. D.H. Kim, C.D. Kim, H.R. Lee. Carbon, 42 (8-9), 1807 (2004). DOI: 10.1016/j.carbon.2004.03.015
  18. J.D. Hwang, K.F. Chen, L.H. Chan, Y.Y. Chang. Appl. Phys. Lett., 89 (3), 033103 (2006). DOI: 10.1063/1.2222337
  19. J.Y. Pan, C.C. Zhu, Y.L. Gao. Appl. Surf. Sci., 254 (13), 3787 (2008). DOI: 10.1016/j.apsusc.2007.12.002
  20. X. Yan, B.K. Tay, P. Miele. Carbon, 46 (5), 753 (2008). DOI: 10.1016/j.carbon.2008.01.027
  21. S. Chakrabarti, L. Pan, H. Tanaka, S. Hokushin, Y. Nakayama. Jpn. J. Appl. Phys., 46 (7R), 4364 (2007). DOI: 10.1143/JJAP.46.4364
  22. C. Yang, Y. Li-Gang, W. Ming-Sheng, Z. Qi-Feng, W. Jin-Lei. Chin. Phys. Lett., 22 (4), 911 (2005). DOI: 10.1088/0256-307X/22/4/037
  23. H.B. Lian, K.Y. Lee, K.Y. Chen, Y.S. Huang. Diamond and Related Materials, 18 (2-3), 541-543 (2009). DOI: 10.1016/j.diamond.2008.10.054
  24. C.A. Chen, K.Y. Lee, Y.M. Chen, J.G. Chi, S.S. Lin, Y.S. Huang. Vacuum, 84 (12), 1427 (2010). DOI: 10.1016/j.vacuum.2009.12.016
  25. M. Sreekanth, S. Ghosh, P. Srivastava. arXiv (2018). arXiv preprint. DOI: 10.48550/arXiv.1811.10951
  26. C.J. Yang, J.I. Park, Y.R. Cho. Adv. Eng. Mater., 9 (1-2), 88 (2007). DOI: 10.1002/adem.200600003
  27. Y.M. Chen, C.A. Chen, Y.S. Huang, K.Y. Lee, K.K. Tiong. Nanotechnology, 21 (3), 035702 (2009). DOI: 10.1088/0957-4484/21/3/035702
  28. Y.M. Chen, C.A. Chen, Y.S. Huang, K.Y. Lee, K.K. Tiong. J. Alloys and Compounds, 487 (1-2), 659 (2009). DOI: 10.1016/j.jallcom.2009.07.181
  29. Y. Il Song, C.M. Yang, L. Ku Kwac, H. Gun Kim, Y. Ahm Kim. Appl. Phys. Lett., 99 (15), 153115 (2011). DOI: 10.1063/1.3650471
  30. J. Xu, P. Xu, W. Ou-Yang, X. Chen, P. Guo, J. Li, X. Piao, M. Wang, Z. Sun. Appl. Phys. Lett., 106 (7), 073501 (2015). DOI: 10.1063/1.4909552
  31. M.M. Raza, M. Sadiq, S. Khan, M. Zulfequar, M. Husain, S. Husain, J. Ali. Diamond and Related Mater., 110, 108139 (2020). DOI: 10.1016/j.diamond.2020.108139
  32. P.H. Chen, Y.S. Huang, W.J. Su, K.Y. Lee, K.K. Tiong. Mater. Chem. Phys., 143 (3), 1378 (2014). DOI: 10.1016/j.matchemphys.2013.11.049
  33. R. Smoluchowski. Phys. Rev., 60 (9), 661 (1941). DOI: 10.1103/PhysRev.60.661
  34. W. Li, D.Y. Li. J. Chem. Phys., 122 (6), 064708 (2005). DOI: 10.1063/1.1849135
  35. R.W. Strayer, W. Mackie, L.W. Swanson. Surface Sci., 34 (2), 225 (1973). DOI: 10.1016/0039-6028(73)90117-9
  36. A. Jablonski, K. Wandelt. Surface Interface Analysis, 17 (9), 611 (1991). DOI: 10.1002/sia.740170902
  37. M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu. Adv. Functional Mater., 22 (21), 4557 (2012). DOI: 10.1002/adfm.201200615
  38. S. Lany, J. Osorio-Guillen, A. Zunger. Phys. Rev. B, 75 (24), 241203 (2007). DOI: 10.1103/PhysRevB.75.241203
  39. M.T. Greiner, M.G. Helander, Z.B. Wang, W.M. Tang, Z.H. Lu. J. Phys. Chem. C, 114 (46), 19777 (2010). DOI: 10.1021/jp108281m
  40. L. Filatov, P. Vishniakov, I. Ezhov, I. Gorbov, D. Nazarov, D. Olkhovskii, R. Kumar, S. Peng, G. He, V. Chernyavsky, M. Gushchina, M. Maximov. Mater. Lett., 353, 135250 (2023). DOI: 10.1016/j.matlet.2023.135250
  41. M.A. Chumak, A.A. Rokacheva, L.A. Filatov, A.G. Kolosko, S.V. Filippov, E.O. Popov. J. Phys.: Conf. Series. --- IOP Publishing, 2103 (1), 012110 (2021). DOI: 10.1088/1742-6596/2103/1/012110
  42. R. Schlaf, H. Murata, Z.H. Kafafi. J. Electron Spectr. Related Phenomena, 120 (1-3), 149 (2001). DOI: 10.1016/S0368-2048(01)00310-3
  43. E.O. Popov, A.G. Kolosko, S.V. Filippov, E.I. Terukov, R.M. Ryazanov, E.P. Kitsyuk. J. Vacuum Sci. Technol. B, 38 (4), 043203 (2020). DOI: 10.1116/6.0000072
  44. M. Scardamaglia, M. Amati, B. Llorente, P. Mudimela, J.F. Colomer, J. Ghijsen, C. Ewels, R. Snyders, L. Gregoratti, C. Bittencourt. Carbon, 77, 319 (2014). DOI: 10.1016/j.carbon.2014.05.035
  45. T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown. Carbon, 43 (1), 153 (2005). DOI: 10.1016/j.carbon.2004.08.033
  46. Y.M. Shulga, T. Ta-Chang, H. Chi-Chen, L. Shen-Chuan, V.E. Muradyan, N.F. Polyakova, L. Yong-Chien. Alternative Energy and Ecology, 10, 40 (2006)
  47. A. Kemelbay, A. Tikhonov, S. Aloni, T.R. Kuykendall. Nanomaterials, 9 (8), 1085 (2019). DOI: 10.3390/nano9081085
  48. A. Dobrzanska-Danikiewicz, D. ukowiec, J. Kubacki. J. Nanomaterials, 2016. DOI: 10.1155/2016/4942398
  49. X. Chen, L. Liu, Z. Liu, M.A. Marcus, W.C. Wang, N.A. Oyler, M.E. Grass, B. Mao, P.-A. Glans, P.Y. Yu, J. Guo, S.S. Mao. Scientific Reports, 3 (1), 1510 (2013). DOI: 10.1038/srep01510
  50. R. Kumari, P.K. Tyagi, N.K. Puri. Appl. Phys. A, 124, 1 (2018). DOI: 10.1007/s00339-018-1850-8
  51. A. Moya, N. Kemnade, M.R. Osorio, A. Cherevan, D. Granados, D. Eder, J.J. Vilatela. J. Mater. Chem. A, 5 (47), 24695 (2017). DOI: 10.1039/C7TA08074C
  52. J. Jhaveri. Interface Recombination in TiO2/Silicon Heterojunctions for Silicon Photovoltaic Applications (Doctoral dissertation, Princeton University, 2018)
  53. V.N. Shrednik. Field Emission Theory. (Chap. 6. In Unheated Cathodes; Elinson, M.I., Ed.; Sovietskoe Radio: M., Russia, 1974), p. 165-207. (In Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru