Conductivity of nanocontact to AIIIAs- and AIIISb semiconductors with a native oxide layer
Alekseev P. A.1, Kunitsyna E.V.1, Suntsova V. S.1, Baranov A. N.2, Romanov V. V.1, Moiseev K. D.1
1Ioffe Institute, St. Petersburg, Russia
2Institute of Electronics and Systems, University of Montpellier, CNRS/Universite, Montpellier, France
Email: npoxep@gmail.com

PDF
The work examines surface electronic phenomena in AIIIBV semiconductors, namely AIIIAs and AIIISb with a native oxide layer, using scanning probe microscopy methods. Using the Kelvin probe microscopy method, it was shown that the work function of a semiconductor is determined by the work function of the near-surface layer of a V-group element (As, Sb) formed during oxidation. Measurement of current-voltage characteristics using conductive atomic force microscopy revealed that the conductivity in the region of a point nanocontact is determined by the spreading resistance and the height of the Schottky barrier, which depends on the position of the Fermi level in the bulk of the semiconductor and the work function of the surface layer. Keywords: AIIIBV, antimonides, arsenides, surface conductivity, native oxide, I-V curves.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru