Effect of surface modification by selective laser melting on heat transfer during pool boiling and microjet cooling with water
Shamirzaev A. S. 1, Mordovskoy A. S. 1, Baev S. G. 2, Katasonov D. N. 2,3, Bessmeltsev V. P. 2, Kuznetsov V. V. 1,4
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Institute of Automation and Electrometry, Siberian BranchRussian Academy of Sciences, Novosibirsk, Russia
3Novosibirsk State Technical University, Novosibirsk, Russia
4Novosibirsk State University, Novosibirsk, Russia
Email: vladkuz@itp.nsc.ru
Heat transfer on a surface with a relief obtained by selective laser melting of copper powder was experimentally studied under conditions of pool boiling of saturated water and microjet cooling with a subcooled liquid. Microjet cooling was carried out by a distributed system of impact microjet water at subcooling to a saturation temperature of 80oC. In the experiments, 36 impact microjets were used, the nozzles of which, with a diameter of 174 μm, were located at a distance of 1 mm from the modified surface. It has been established that under conditions of saturated boiling, the heat transfer coefficients on the modified surface are 3.5 times higher, and the critical heat flux is 2.8 times higher than for a smooth surface. Under microjet cooling conditions at a jet speed of 1 m/s, the intensification of heat transfer from the modified surface was 35%, and an increase in the maximum heat flux was achieved from 493 W/cm2 to 770.3 W/cm2. Keywords: selective laser melting, heat transfer, critical heat flux, saturated boiling, microjet cooling.
- S.G. Kandlikar, S. Colin, Y. Peles, S. Garimella, R.F. Pease, J.J. Brandner, D.B. Tuckerman, J. Heat Transfer, 135 (9), 091001 (2013). DOI: 10.1115/1.4024354
- K.A. Busov, N.A. Mazheiko, Tech. Phys. Lett., 49 (11), 15 (2023)
- S. Fan, F. Duan, Int. J. Heat Mass Transfer, 150, 119324 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.119324
- V.V. Kuznetsov, A.S. Shamirzaev, A.S. Mordovskoy, Tech. Phys. Lett., 49 (1), 71 (2023). DOI: 10.21883/TPL.2023.01.55354.19405
- S. Jones-Jackson, R. Rodriguez, A. Emadi, IEEE Trans. Power Electron., 36 (9), 10420 (2021). DOI: 10.1109/TPEL.2021.3059558
- Yu.A. Zeigarnik, N.P. Privalov, A.I. Klimov, Therm. Eng., N 1, 28 (1981). https://www.osti.gov/etdeweb/biblio/5346088
- M.J. Rau, S.V. Garimella, Int. J. Heat Mass Transfer, 67, 487 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.08.041
- C. de Brun, R. Jenkins, T.L. Lupton, R. Lupoi, R. Kempers, A.J. Robinson, Exp. Therm. Fluid Sci., 86, 224 (2017). DOI: 10.1016/j.expthermflusci.2017.04.002
- C.H. Li, T. Li, P. Hodgins, C.N. Hunter, A.A. Voevodin, J.G. Jones, G.P. Peterson, Int. J. Heat Mass Transfer, 54 (15-16), 3146 (2011). DOI: 10.1016/j.ijheatmasstransfer.2011.03.062
- S. Sarkar, R. Gupta, T. Roy, R. Ganguly, C.M. Megaridis, Int. J. Heat Mass Transfer, 206, 123888 (2023). DOI: 10.1016/j.ijheatmasstransfer.2023.123888
- V.P. Bessmeltsev, A.N. Pavlenko, V.I. Zhukov, Optoelectron. Instrument. Proc., 55 (6), 554 (2019). DOI: 10.3103/S8756699019060049
- M.G. Cooper, Adv. Heat Transfer, 16, 157 (1984). DOI: 10.1016/S0065-2717(08)70205-3
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.