Enhancing interfacial adhesion at the carbon nanotube/titanium interface using ion beam irradiation
Knyazev E. V. 1,2, Korusenko P. M. 2,3, Makyshenko R. K.1, Nesov S. N. 1,2, Povoroznyuk S. N. 1,2, Ivlev K. E.1, Sivkov D. V. 3,4, Petrova O. V. 3,4, Vinogradov A. S. 3
1Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2Omsk State Technical University, Omsk, Russia
3St. Petersburg State University, St. Petersburg, Russia
4Komi Science Centre of the Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
Email: knyazevyegor@mail.ru, korusenko_petr@mail.ru, makyshenko@obisp.oscsbras.ru, nesov55@mail.ru, povorozn@obisp.oscsbras.ru, ivlev@obisp.oscsbras.ru, knyazev@obisp.oscsbras.ru, asvinograd@gmail.com

PDF
The effect of increasing interfacial adhesion at the interface between a layer of multi-walled carbon nanotubes and titanium foil as a result of irradiation with argon ions was discovered and interpreted. Scanning electron microscopy was used to characterize the layer of carbon nanotubes before and after irradiation. The core-level photoelectron spectra of carbon, oxygen and titanium atoms were analyzed using X-ray photoelectron spectroscopy. It is shown that the increase in adhesion at the "multi-walled carbon nanotubes/Ti" interface is due to the chemical bonding of titanium atoms with oxygen atoms of oxygen-containing functional groups formed on the surface of carbon nanotubes as a result of its irradiation with an ion beam. It is important that in this case the formation of titanium carbides does not occur. Keywords: carbon nanotubes, interface, ion irradiation, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS).
  1. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Catalysts, 10, 969 (2020). DOI: 10.3390/catal10090969
  2. C. Peng, S. Zhang, D. Jewell, G. Chen, Nat. Sci., 18, 777 (2008). DOI: 10.1016/J.PNSC.2008.03.002
  3. D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Energy Environ. Sci., 11, 3096 (2018). DOI: 10.1039/C8EE00640G
  4. S. Eliseeva, M. Kamenskii, E. Tolstopyatova, V. Kondratiev, Energies, 13, 2163 (2020). DOI: 10.3390/en13092163
  5. W.J. Lee, Y.B. Kim, Thin Solid Films, 517, 1191 (2008). DOI: 10.1016/j.tsf.2008.06.022
  6. D.V. Krasnikov, A.N. Shmakov, V.L. Kuznetsov, A.V. Ishchenko, J. Struct. Chem., 57, 1436 (2016). DOI: 10.1134/S0022476616070192
  7. C.K. Chua, M. Pumera, J. Mater. Chem., 22, 23227 (2012). DOI: 10.1039/C2JM34358D
  8. M. Ivanovskaya, E. Ovodok, D. Kotsikau, I. Azarko, M. Micusik, M. Omastova, V. Golovanov, RSC Adv., 10, 25602 (2020). DOI: 10.1039/d0ra02959a

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru