Effect of substrate temperature on the Ga-S films properties prepared by PECVD
M.A. Kudryashov1,2, L.A. Mochalov1,2, M.A. Vshivtsev1, I.O. Prokhorov1,2, Yu.M. Spivak3, V.A. Moshnikov3, Yu.P. Kudryashova2, P.V. Mosyagin2, E.A. Slapovskaya2, V.M. Malyshev1
1Alekseev State Technical University, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: ymkanageeva@yandex.ru

PDF
Gallium sulfide (GaS) has a great potential for applications in optoelectronics and energy storage. In view of the sufficiently large Eg, thin films of gallium sulfide can be used as a buffer layer in a solar cell. GaS also provides efficient passivation of the GaAs surface. In this work, Ga-S thin films were obtained for the first time by plasma-chemical vapor deposition. High-purity elemental Ga and S were used as precursors. The plasma was excited by an RF generator (40.68 MHz) at a reduced pressure of 0.1 Torr. The composition, structural and optical properties of Ga-S films were studied depending on the substrate temperature. All films were highly transparent (75%) in the range of 400-1100 nm. Keywords: gallium sulfide, films, PECVD, structure, optical properties.
  1. C.S. Jung, F. Shojaei, K. Park, J.Y. Oh, H.S. Im, D.M. Jang, J. Park, H.S. Kang. ACS Nano, 9 (10), 9585 (2015). DOI: 10.1021/acsnano.5b04876
  2. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, K. Xiao. Nano Lett., 13 (4), 1649 (2013). DOI: 10.1021/nl400107k
  3. Y. Gutierrez, M.M. Giangregorio, S. Dicorato, F. Palumbo, M. Losurdo. Front. Chem., 9, 781467 (2021). DOI: 10.3389/fchem.2021.781467
  4. C.H. Ho, S.L. Lin. J. Appl. Phys., 100 (8), 083508 (2006). DOI: 10.1063/1.2358192
  5. B. Chitara, A. Ya'akobovitz. Nanoscale, 10 (27), 13022 (2018). DOI: 10.1039/C8NR01065J
  6. C. Jastrzebski, K. Olkowska, D.J. Jastrzebski, M. Wierzbicki, W. Gebicki, S. Podsiadlo. J. Phys. Condens. Matter., 31 (7), 075303 (2019). DOI: 10.1088/1361-648X/aaf53b
  7. R.M.A. Lieth, F. Van Der Maesen. Phys. Status Solidi, 10 (1), 73 (1972). DOI: 10.1002/pssa.2210100107
  8. R. Minder, G. Ottaviani, C. Canali. J. Phys. Chem. Solids, 37 (4), 417 (1976). DOI: 10.1016/0022-3697(76)90023-8
  9. A. Cingolani, A. Minafra, P. Tantalo, C. Paorici. Phys. Status Solidi, 4 (1), K83 (1971). DOI: 10.1002/pssa.2210040150
  10. J.F. Molloy, M. Naftaly, Y.M. Andreev, G.V. Lanskii, I.N. Lapin, A.I. Potekaev, K.A. Kokh, A.V. Shabalina, A.V. Shaiduko, V.A. Svetlichnyi. Cryst. Eng. Comm., 16 (10), 1995 (2014). DOI: 10.1039/C3CE42230E
  11. D.J. Late, B. Liu, J. Luo, A. Yan, H.S.S.R. Matte, M. Grayson, C.N.R. Rao, V.P. Dravid. Adv. Mater., 24 (26), 3549 (2012). DOI: 10.1002/adma.201201361
  12. S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Li, J. Li. Nanoscale, 6 (5), 2582 (2014). DOI: 10.1039/C3NR05965K
  13. Y. Lu, J. Chen, T. Chen, Y. Shu, R.J. Chang, Y. Sheng, V. Shautsova, N. Mkhize, P. Holdway, H. Bhaskaran, J.H. Warner. Adv. Mater., 32 (7), 1906958 (2020). DOI: 10.1002/adma.201906958
  14. H. Lu, Y. Chen, K. Yang, Y. Kuang, Z. Li, Y. Liu. Front. Mater., 8, 775048 (2021). DOI: 10.3389/fmats.2021.775048
  15. A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. Mcateer, H.C. Nerl, E. Mcguire, A. Seral-Ascaso, Q.M. Ramasse, N. Mcevoy, S. Winters, N.C. Berner, D. Mccloskey, J.F. Donegan, G.S. Duesberg, V. Nicolosi, J.N. Coleman. Chem. Mater., 27 (9), 3483 (2015). DOI: 10.1021/acs.chemmater.5b00910
  16. E. Cuculescu, I. Evtodiev, M. Caraman, M. Rusu. J. Optoelectron. Adv. Mater., 8 (3), 1077 (2006)
  17. X. Wang, Y. Sheng, R.J. Chang, J.K. Lee, Y. Zhou, S. Li, T. Chen, H. Huang, B.F. Porter, H. Bhaskaran, J.H. Warner. ACS Omega, 3 (7), 7897 (2018). DOI: 10.1021/acsomega.8b00749
  18. M. Ohyama, H. Ito, M. Takeuchi. Jpn. J. Appl. Phys., 44 (7R), 4780 (2005). DOI: 10.1143/JJAP.44.4780
  19. N. Okamoto, H. Tanaka, N. Hara. Jpn. J. Appl. Phys., 40 (2A), L104 (2001). DOI: 10.1143/JJAP.40.L104
  20. J. Kuhs, Z. Hens, C. Detavernier. J. Vac. Sci. Technol. A, 37, 020915 (2019). DOI: 10.1116/1.5079553
  21. H. Ertap, T. Baydar, M. Yuksek, M. Karabulut. Turkish J. Phys., 40 (3), 12 (2016). DOI: 10.3906/fiz-1604-14
  22. K. Morii, H. Ikeda, Y. Nakayama. Mater. Lett., 17 (5), 274 (1993). DOI: 10.1016/0167-577X(93)90013-N
  23. L. Mochalov, A. Logunov, I. Prokhorov, M. Vshivtsev, M. Kudryashov, Yu. Kudryashova, V. Malyshev, Yu. Spivak, E. Greshnyakov, A. Knyazev, D. Fukina, P. Yunin, V. Moshnikov. Opt. Quant. Electron., 54, 646 (2022). DOI: 10.1007/s11082-022-03979-z
  24. L. Mochalov, A. Logunov, M. Kudryashov, I. Prokhorov, T. Sazanova, P. Yunin, V. Pryakhina, I. Vorotuntsev, V. Malyshev, A. Polyakov, S.J. Pearton. ECS J. Solid State Sci. Technol., 10, 073002 (2021). DOI: 10.1149/2162-8777/ac0e11
  25. L. Mochalov, A. Logunov, D. Gogova, S. Zelentsov, I. Prokhorov, N. Starostin, A. Letnianchik, V. Vorotyntsev. Opt. Quant. Electron., 52, 510 (2020). DOI: 10.1007/s11082-020-02625-w
  26. M. Parlak, C. Er celebi. Thin Solid Films, 322 (1-2), 334 (1998). DOI: 10.1016/S0040-6090(97)00929-2
  27. C. Sanz, C. Guillen, M.T. Gutierrez. J. Phys. D. Appl. Phys., 42 (8), 085108 (2009). DOI: 10.1088/0022-3727/42/8/085108
  28. G. Micocci, R. Rella, A. Tepore. Thin Solid Films, 172 (2), 179 (1989). DOI: 10.1016/0040-6090(89)90647-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru