Igumenov A. Yu.
1,2, Lukinykh S. N.3,4, Nanii O. E.2,4, Treshchikov V. N.2,5
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
2T8 LLC, Moscow, Russia
3 T8 Scientific and Technical Center, Moscow, Russia
4Department of Physics, Lomonosov Moscow State University, Moscow, Russia
5Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: igumenov.au@mipt.ru
The system of optical stabilization (Gain Clamping, GC) for gain of distributed SRS optical amplifier with forward pumping (Forward Distributed Raman Amplifier Unit, F-DRAU) was experimentally studied. For optical stabilization, spectrally selective, within one channel, optical feedback is created in the form of a linear resonator with Faraday mirrors. When the gain is unsaturated and exceeds the losses in the feedback circuit, generation occurs, ensuring stabilization of the gain at a level that exactly compensates the losses in the feedback circuit. The effect on the gain of individual channels of changes in the RAU pump power and the input power to the line was studied. It has been shown that optical stabilization makes it possible to reduce gain variations when changing the pump laser power and the total input power of the multichannel signal. In particular, it is shown that when using the proposed feedback method, changes in gain caused by fluctuations in input power by 8 dB were reduced from 1.9 dB to 0.2 dB. An algorithm for auto-tuning the pump power is proposed. This algorithm makes it possible to reduce the skew of the gain spectrum in a Raman amplifier with feedback and reduce energy consumption. Keywords: Fiber Optics, Fiber Optic Amplifiers, Raman Amplifer Unit, Gain Clamping.
- A. Lubana, S. Kaur. J. Nonlinear Opt. Phys. Mater., 5 (2023). DOI: 10.1142/S021886352350056X
- Y. Akasaka, P. Palacharla, S. Takasaka, R. Sugizaki. J. Lightwave Technol., 41 (3), 815 (2023). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-41-3-815
- Y. Wang, N.K. Thipparapu, D.J. Richardson, J.K. Sahu. J. Light Technol., 39 (3), 795(2021). https://opg.optica.org/jlt/abstract.cfm?uri=jlt-39-3-795
- V.N. Treshchikov, V.N. Listvin. DWDM-sistemy (Tekhnosfera, M., 2021), 420 s. (in Russian)
- Lubana Anurupa, Kaur Sanmukh, Puri Yugnanda. Optical Fiber Technol., 53 (17), 102016 (2019). DOI: 10.1016/j.yofte.2019.102016
- B. Ahuja, M.L. Meena. Intern. J. Industrial Electron. Electr. Eng. (IJIEEE), 7 (10), 265 (2020)
- F.M. Mustafa, A.F. Sayed, M.N. Aly. Opt. Quant. Electron, 54 (471), 1 (2022). DOI: 10.1007/s11082-022-03876-5
- V.A. Konyshev, A.V. Leonov, O.E. Nanii, D.D. Starykh, V.N. Treshchikov, R.R. Ubaydullaev. Kvant. Elektron., 52 (12), 1102 (2022). DOI: https://doi.org/10.3103/S1068335623160078
- A.V. Leonov, O.E. Nanij, V.N. Treshchikov. Prikladnaya fotonika, 1 (1), 27 (2014). (in Russian)
- S. Olonkins, I. Stankunovs, A. Alsevska, L. Gegere, V. Bobrovs. Progr. Electromag. Res. Sympos. (PIERS), 8--11, 3773 (2016). DOI: 10.1109/PIERS.2016.7735423
- T. Zhang, X. Zhang, G. Zhang, IEEE Photon. Technol. Lett., 17 (6), 1175 (2005). DOI: 10.1109/LPT.2005.846479
- J. Putrina, S. Olonkins, V. Bobrovs, G. Ivanovs. 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (Singapore, 2017), p. 236-241. DOI: 10.1109/PIERS-FALL.2017.8293141
- M.N. Islam. Raman Amplifers for Telecommunications 2, Sub-systems and Systems (Springer, 2007), v. 90, 428 p
- C. Eadley, G.P. Agrawal. Raman Amplifcation in Fber Optical Communication Systems (Academic Press, USA, 2005)
- Y. Sun, A.K. Srivastava, J.L. Zyskind, J.W. Sulhoff, C. Wolf, R.W. Tkach. Electron. Lett., 33 (4), 313 (1997). DOI: 10.1049/el:19970187
- A.A.A. Bakar, M.A. Mahdi, M.H. Al-Mansoori, S. Shaari, A.K. Zamzuri. Laser Phys., 19 (5), 1026 (2009). DOI: 10.1134/S1054660X09050259
- S. Aozasa, H. Masuda, M. Shimizu, M. Yamada. J. Lightwave Technol., 26 (10), 1274 (2008). DOI: 10.1109/JLT.2008.917338
- T.C. Liang, S. Hsu. Opt. Eng., 44 (11), 115001 (2005). DOI: 10.1117/1.2127928
- H. Dai, J. Pan, C. Lin. IEEE Photon. Technol. Lett., 9 (6), 737 (1997)
- N. Vijayakumar, R. Sreeja, Microwave Opt. Technol. Lett., 51, 2156 (2009). DOI: 10.1002/mop.24554
- A. Bianciotto, A. Carena, V. Ferrero, R. Gaudino, IEEE Photonics Technol. Lett., 15, 1351 (2003). DOI: 10.1109/LPT.2003.818267
- J.-C. Dung, H.-Y. Cheng, Y.-S. Syu. Opt. Eng., 49 (4), 045003 (2010). DOI: 10.1117/1.3386520
- A. Ahmad, M.I. Md Ali, A.K. Zamzuri, R. Mohamad, M.A. Mahdi. Microw. Opt. Technol. Lett., 48 (4), 721 (2006). DOI: 10.1002/mop.21455
- S.S. Yam, F. An, E.S. Hu, M.E. Marhic, T. Sakamoto, L.G. Kazovsky, Y. Akasaka. OSA Trends in Optics and Photonics, 70, ThB4 (2002)
- Z. Chen, J. Ning, Q. Han. Modern Phys. Lett. B, 21 (20), 1307 (2007). DOI: 10.1142/S0217984907013596
- M. Karasek, J. Kav nka, P. Honzatko, J. Radil. Opt. Commun., 231 (1-6), 309 (2004). DOI: 10.1016/j.optcom.2003.11.042
- G. Bolognini, F. Di Pasquale. IEEE Photon. Technol. Lett., 16 (1), 66 (2004). DOI: 10.1109/LPT.2003.818928
- H.S. Seo, J.T. Ahn, B.J. Park, W.J. Chung. Opt. Lett., 33 (4), 327 (2008). DOI: 10.1364/OL.33.000327
- G. Yandong, Q. Wen, Z. Xiang, S. Ping, L. Chao, C. Tee. Summaries of Papers Lasers and Electro-Optics. CLEO'02. Technical Diges, 1, 480 (2002). DOI: 10.1109/CLEO.2002.1034226
- G. Sun, A. Lin, D. Hwang, Y. Chung. Laser Phys., 18, 1192 (2008). DOI: 10.1134/S1054660X08100149
- H. Wei, Z. Tong, S. Jian. Proc. SPIE, Optical Fibers and Passive Components, 5279, 73 (2004). DOI: 10.1117/12.521476
- G.694.1: Spectral grids for WDM applications: DWDM frequency grid https://www.itu.int/rec/T-REC-G.694.1-202010-I/en
- Y.-H. Lu, S. Chi. Optics Commun., 229 (1-6), 317 (2004). DOI: 10.1016/j.optcom.2003.10.028
- S.W. Harun, N. Tamchek, T.S. Teyo. Indian J. Phys., 76B (2), 103 (2002)
- K. Inoue. IEEE Photon. Technol. Lett., 11 (9), 1108 (1999). DOI: 10.1109/68.784203
- A.Yu. Igumenov, S.N. Lukinykh, O.E. Nanii, V.N. Treshchikov. Bull. Lebedev Phys. Institute, 50 (S10), S1120 (2023). DOI: 10.3103/S1068335623220049
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.