Heating of a quantum cascade laser under pulsed pumping: theory and experiment
Vrubel I. I.1, Cherotchenko E. D.1, Mikhailov D. A.1, Novikov I. I.2, Papylev D. S.2, Chistyakov D. V.1, Deryagin N.G.1, Mylnikov V. Yu.1, Abdulrazak S. H.1, Dudelev V. V.1, Sokolovskii G. S. 1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
Email: echerotchenko@gmail.com

PDF
The paper considers the features of the quantum cascade laser operation under pulsed current pumping and corresponding heating. We have shown that, as the steepness of the pump pulse front edge decreases, the threshold current shifts towards higher values by tens of milliamps, which is associated with intense heating of the QCL active region in the first moments after the start of pumping. A model based on the thermodiffusion approximation is proposed to describe the experiment. Studying the time dependence of laser radiation intensity has shown that, within the interval of hundreds of nanoseconds after the pump pulse onset, power transfer to the main heat sink gets activated; thereat, the heat removal efficiency reaches 50-75% of the total power consumption, which significantly reduces the rate of active region heating. Keywords: integrated optics, quantum cascade laser.
  1. R. Kazarinov, R. Suris, Sov. Phys. Semicond., 5 (4), 707 (1971)
  2. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science, 264 (5158), 553 (1994). DOI: 10.1126/science.264.5158.553
  3. P.I. Abramov, E.V. Kuznetsov, L.A. Skvortsov, M.I. Skvortsova, J. Appl. Spectrosc., 86 (1), 1 (2019). DOI: 10.1007/s10812-019-00775-8
  4. R.J. Grasso, Proc. SPIE, 9933, 99330F (2016). DOI: 10.1117/12.2238963
  5. B. Panda, A. Pal, S. Chakraborty, M. Pradhan, Infrared Phys. Technol., 125, 104261 (2022). DOI: 10.1016/j.infrared.2022.104261
  6. X. Pang, O. Ozolins, L. Zhang, R. Schatz, A. Udalcovs, X. Yu, G. Jacobsen, S. Popov, J. Chen, S. Lourdudoss, Phys. Status Solidi A, 218 (3), 2000407 (2021). DOI: 10.1002/pssa.202000407
  7. A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai, M. Razeghi, Appl. Phys. Lett., 91 (7), 071101 (2007). DOI: 10.1063/1.2770768
  8. F. Wang, S. Slivken, D.H. Wu, M. Razeghi, Opt. Express, 28 (12), 17532 (2020). DOI: 10.1364/OE.394916
  9. E. Cherotchenko, V. Dudelev, D. Mikhailov, G. Savchenko, D. Chistyakov, S. Losev, A. Babichev, A. Gladyshev, I. Novikov, A. Lutetskiy, D. Veselov, S. Slipchenko, D. Denisov, A. Andreev, I. Yarotskaya, K. Podgaetskiy, M. Ladugin, A. Marmalyuk, N. Pikhtin, L. Karachinsky, V. Kuchinskii, A. Egorov, G. Sokolovskii, Nanomaterials, 12 (22), 3971 (2022). DOI: 10.3390/nano12223971
  10. A.V. Babichev, V.V. Dudelev, A.G. Gladyshev, D.A. Mikhailov, A.S. Kurochkin, E.S. Kolodeznyi, V.E. Bougrov, V.N. Nevedomskiy, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lutetskiy, N.A. Pikhtin, G.S. Sokolovskii, A.Yu. Egorov, Tech. Phys. Lett., 45 (7), 735 (2019). DOI: 10.1134/S1063785019070174
  11. A.V. Babichev, A.G. Gladyshev, A.V. Filimonov, V.N. Nevedomskii, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, A. Bousseksou, A.Yu. Egorov, Tech. Phys. Lett., 43 (7), 666 (2017). DOI: 10.1134/S1063785017070173
  12. V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, A.D. Andreev, S.N. Losev, E.A. Kognovitskaya, Yu.K. Bobretsova, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Quantum Electron., 50 (2), 141 (2020). DOI: 10.1070/QEL17168.
  13. V.V. Dudelev, E.D. Cherotchenko, I.I. Vrubel, D.A. Mikhailov, D.V. Chistyakov, V.Yu. Mylnikov, S.N. Losev, E.A. Kognovitskaya, A.V. Babichev, A.V. Lutetskiy, S.O. Slipchenko, N.A. Pikhtin, A.V. Abramov, A.G. Gladyshev, K.A. Podgaetskiy, A.Yu. Andreev, I.V. Yarotskaya, M.A. Ladugin, A.A. Marmalyuk, I.I. Novikov, V.I. Kuchinskii, L.Ya. Karachinsky, A.Yu. Egorov, G.S. Sokolovskii, Phys. Usp., 67 (1) (2024). DOI: 10.3367/UFNe.2023.05.039543
  14. S. Adachi, Physical properties of III-V semiconductor (John Wiley \& Sons, 1992)
  15. H.Y. Lee, J.S. Yu, Appl. Phys. B, 106 (3), 619 (2012). DOI: 10.1007/s00340-011-4744-4.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru