Oscillation processes during acoustic wave propagation in monolayer phosphorene
Shepelev I.A. 1,2, Kolesnikov I.D.2, Dmitriev S.V.3
1Almetyevsk state oil institute, Almetyevsk, Tatarstan, Russia
2Saratov State University, Saratov, Russia
3Institute of Molecule and Crystal Physics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
Email: igor_sar@li.ru, kole200@yandex.ru, dmitriev.sergey.v@gmail.com

PDF
Acoustic waves can arise in crystals as a result of slow continuous longitudinal compression and are an effective way to transfer energy over long distances deep into the crystal without significantly changing its properties. Acoustic wave propagation in two-dimensional (2D) materials is much less studied than in 3D crystals. Molecular dynamics simulations are used to analyze acoustic dynamics in single-layer phosphorene. We analyze the mechanisms of wave propagation in different crystallographic directions and the effect on the wave properties due to the high lattice anisotropy of phosphorene. As part of the analysis, we study the vibrations of the atoms through which the acoustic wave travels in both inert and moving coordinate systems. This enables us to analyze in detail the wave propagation process and the dynamics of the vibrations of the atoms arising after the wave passes through them. In general, our results contribute to the understanding of the nonlinear dynamics of localized excitations in two-dimensional materials. Keywords: 2D materials, phosphorene, extreme impacts, acoustic waves, molecular dynamics, longitudinal compression.
  1. A.K. Geim, K.S. Novoselov. Nature Mater., 6 (3), 183 (2007). DOI: 10.1038/nmat1849
  2. J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, K. Banerjee. Micro-and Nanotechnology Sensors, Systems, and Applications VI. SPIE. 9083, 20-26 (2014). DOI: 10.1117/12.2051198
  3. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang. Nature Nanotechnol., 9 (5), 372 (2014). DOI: 10.1038/nnano.2014.35
  4. X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus. Proceed. National Academy Sci., 112 (15), 4523 (2015). DOI: 10.1073/pnas.1416581112
  5. N. Yang, X. Xu, G. Zhang, B. Li. Aip Adv., 2 (4), 041410 (2012). DOI: 10.1063/1.4773462
  6. J. Zhang, Z. Dong, X. Wang, X. Zhao, J. Tu, Q. Su, G.S. Du. J. Power Sources, 270, 1 (2014). DOI: 10.1016/j.jpowsour.2014.07.089
  7. Z. Xue, G. Chen, Ch. Wang, R. Huang. J. Mechan. Phys. Solids, 158, 104698 (2022). DOI: 10.1016/j.jmps.2021.104698
  8. F.L. Thiemann, P. Rowe, E.A. Muller, A. Michaelides. J. Phys. Chem. C, 124 (40), 22278 (2020). DOI: 10.1021/acs.jpcc.0c05831
  9. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B, 102 (24), 245432 (2020). DOI: 10.1103/PhysRevB.102.245432
  10. P. Botella, X. Devaux, M. Dossot, V. Garashchenko, J.C. Beltzung, A.V. Soldatov, S. Ananev. Phys. Stat. Solidi (B), 254 (11), 1700315 (2017). DOI: 10.1002/pssb.201700315
  11. Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, Y. Liu. Nature Commun., 11 (1), 1151 (2020). DOI: 10.1038/s41467-020-15023-3
  12. L.K. Galiakhmetova, D.V. Bachurin, E.A. Korznikova, A.M. Bayazitov, A.A. Kudreyko, S.V. Dmitriev. Mechan. Mater., 174, 104460 (2022). DOI: 10.1016/j.mechmat.2022.104460
  13. C. Zhang, A. Godbole, G. Michal, C. Lu. J. Alloys Compounds, 860, 158435 (2021). DOI: 10.1016/j.jallcom.2020.158435
  14. Q. Wei, X. Peng. Appl. Phys. Lett., 104 (25), 251915 (2014). DOI: 10.1063/1.4885215
  15. I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, E.A. Korznikova. Comp. Mater. Sci., 177, 109549 (2020). DOI: 10.1016/j.commatsci.2020.109549
  16. I.A. Shepelev, I.D. Kolesnikov, E.A. Korznikova, S.V. Dmitriev. Physica E: Low-Dimensional Systems and Nanostructures, 146, 115519 (2023). DOI: 10.1016/j.physe.2022.115519
  17. I.A. Shepelev, S.V. Dmitriev, E.A. Korznikova. Lett. Mater., 11 (1), 79 (2021). DOI: 10.22226/2410-3535-2021-1-79-83
  18. W. Xu, L. Zhu, Y. Cai, G. Zhang, B. Li. J. Appl. Phys., 117 (21), 214308 (2015). DOI: 10.1063/1.4922118
  19. F.H. Stillinger, T.A. Weber. Phys. Rev. B, 31 (8), 5262 (1985). DOI: 10.1103/PhysRevB.31.5262
  20. L. Zhu, G. Zhang, B. Li. Phys. Rev. B, 90 (21), 214302 (2014). DOI: 10.1103/PhysRevB.90.214302
  21. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton. Comp. Phys. Comm., 271, 10817 (2022). DOI: 10.1016/j.cpc.2021.108171

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru