Influence of spatial dispersion on plasmons along graphene sheets
M.V. Davidovich1
1Saratov State University, Saratov, Russia

PDF
Taking into account the spatial dispersion and tensor conductivity of graphene, the dispersion equations of plasmons along single sheets of graphene and two sheets, including those located on a substrate, are obtained. A method for determining the dispersion equation for an arbitrary number of sheets and layers is proposed. For slow plasmons with a large distance between the sheets, the equations split into two for single sheets. When the conduction tensor is reduced to a diagonal form, the equations are simplified, and when the plasmon moves along one of the axes, the equations for E-plasmons and H-plasmons that coincide with those known for scalar conductivity decay. Plasmons up to optical and near UV frequencies are considered and numerically investigated, the influence of spatial dispersion is revealed. Plasmons with a deceleration of more than 106 were found. Keywords: graphene, multilayered structures, plasmons, Cubo-Greenwood conductivity, Green's function method.
  1. S. Mikhailov, K. Ziegler. Phys. Rev. Lett., 99, 016803 (2007). DOI: 10.1103/PhysRevLett.99.016803
  2. G.W. Hanson. J. Appl. Phys., 103, 064302 (2008). DOI: 10.1063/1.2891452
  3. G.W. Hanson. J. Appl. Phys., 104, 084314 (2008). DOI: 10.1063/1.3005881
  4. P.I. Buslaev, I.V. Iorsh, I.V. Shadrivov, P.A. Belov, Yu.S. Kivshar. Pisma v ZhETF, 97 (9), 619 (2013) (in Russian). DOI: 10.7868/S0370274X1309008
  5. K.J.A. Ooi, D.T.H. Tan. Proceed. Royal Society A, 473, 20170433 (2017). DOI: 10.1098/rspa.2017.0433
  6. Yu.V. Bludov, A. Ferreira, N.M.R. Peres, M.I. Vasilevskiy. Intern. J. Modern Phys. B, 27 (10), 1341001 (2013). DOI: 10.1142/S0217979213410014
  7. X. Luo, T. Qiu, W. Lum, Z. Ni. Mater. Sci. Eng. R., MSR-434, 1 (2013). DOI: 10.1016/j.mser.2013.09.001
  8. M. Jablan, M. Soljav cic, H. Buljan. Proc. IEEE, 101 (7), 1689 (2013). DOI: 10.1109/JPROC.2013.2260115
  9. V. Ryzhii, A.A. Dubinov, T. Otsuji, V. Mitin, M.S. Shur. J. Appl. Phys., 107, 054505 (2010). DOI: 10.1063/1.3327212
  10. V. Ryzhii, I. Khmyrova, M. Ryzhii, A. Satou. Int. J. High Speed Electron. Systems, 17 (03), 521 (2007). DOI: 10.1142/S0129156407004710
  11. V. Ryzhii, A. Satou, T. Otsuji. J. Appl. Phys., 101, 024509 (2007). DOI: 10.1063/1.2426904
  12. V. Ryzhii. Jpn. J. Appl. Phys., 45 (35), L923 (2006). DOI: 10.1143/JJAP.45.L923
  13. G.W. Hanson. IEEE Trans. Antennas Propag., 56 (3), 747 (2008). DOI: 10.1109/TAP.2008.917005
  14. G.O. Abdullaev, Z.Z. Alisultanov. FTT, 61 (3), 618 (2019) (in Russian). DOI: 10.21883/FTT.2019.03.47260.289
  15. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres. Phys. Rev. Lett., 97, 266801 (2006). DOI: 10.1103/PhysRevLett.97.266801
  16. L.A. Vainshtein. Elektromagnitnye volny (Radio i Svyaz', M., 1988) (in Russian)
  17. M.V. Davidovich. Kvantovaya elektronika, 47 (6), 567 (2017) (in Russian). DOI: 10.1070/QEL16272
  18. M.V. Davidovich. Proc. SPIE, 11066, 1106614 (2019). DOI: 10.1117/12.2521234
  19. V. Ryzhii, A.A. Dubinov, T. Otsuji, V. Mitin, M.S. Shur. J. Appl. Phys., 107, 054505 (2010). DOI: 10.1063/1.3327212
  20. V. Ryzhii, I. Khmyrova, M. Ryzhii, A. Satou. Int. J. High Speed Electron. Systems, 17 (03), 521 (2007). DOI: 10.1142/S0129156407004710
  21. V. Ryzhii, A. Satou, T. Otsuji. J. Appl. Phys., 101, 024509 (2007). DOI: 10.1063/1.2426904
  22. V. Ryzhii. Jpn. J. Appl. Phys., 45 (35), L923 (2006). DOI: 10.1143/JJAP.45.L923
  23. E.H. Hwang, S. Das Sarma. Phys. Rev. B, 75, 205418 (2007); 80, 205405 (2009). DOI: 10.1103/PhysRevB.75.205418
  24. V. Despoja, D. Novko, K. Dekanic, M. Sunjic, L. Marusic. Phys. Rev. B, 87, 075447 (2013)
  25. M.A.K. Othman, C. Guclu, F. Capolino. AP-S, 2013, 484 (2013)
  26. M. Othman, C. Guclu, F. Capolino. Opt. Express, 21 (6), 7614 (2013). DOI: 10.1364/OE.21.007614
  27. M. Jablan, M. Soljav cic, H. Buljan. Proc. IEEE, 101 (7), 1689 (2013). DOI: 10.1109/JPROC.2013.2260115
  28. J.S. Gomez-Diaz, M. Tymchenko, A. Alu. Opt. Mater. Express, 5, 2313 (2015). DOI: 10.1364/OME.5.002313
  29. J.S. Gomez-Diaz, A. Alu. Graphene-Based Hyperbolic Metasurfaces, 2016 10th Europ. Conf. Antennas and Propagation (EuCAP) (Davos, Switzerland, 2016), p. 1-4. DOI: 10.1109/EuCAP.2016.7481165
  30. J.S. Gomez-Diaz, M. Tymchenko, A. Alu. Phys. Rev. Lett., 114, 233901 (2015). DOI: 10.1103/PhysRevLett.114.233901
  31. D. Correas-Serrano, J.S. Gomez-Diaz, M. Tymchenko, A. Alu. Opt. Express, 23 (23), 29434 (2015). DOI: 10.1364/OE.23.029434
  32. Z. Guo, H. Jiang, H. Chen. J. Appl. Phys., 127, 071101 (2020). DOI: 10.1063/1.5128679
  33. M.V. Davidovich. Komp. opt., 45 (1), 48 (2021) (in Russian). DOI: 10.18287/2412-6179-CO-673
  34. M.V. Davidovich. UFN 189 (12), 1250 (2019) (in Russian). DOI: 10.3367/UFNr.2019.08.038643
  35. P.M. Platzman, P.A. Wolff. Volny i vzaimodeystviya v plazme tverdogo tela (Mir, M., 1975) (in Russian)
  36. V.N. Konopsky, E.V. Alieva. Phys. Rev. Lett., 97, 253904 (2006). DOI: 10.1103/PhysRevLett.97.253904
  37. P. Berini. Adv. Opt. Phot., 1 (3), 484 (2009). DOI: 10.1364/AOP.1.000484
  38. Y. Wang, E.W. Plummer, K. Kempa. Adv. Phys., 60 (5), 799 (2011). DOI: 10.1080/00018732.2011.621320
  39. A. Norrman, T. Setala, A.T. Friberg. Opt. Lett., 38 (7), 1119 (2013). DOI: 10.1364/OL.38.001119
  40. A.A. Orlov, A.K. Krylova, S.V. Zhukovsky, V.E. Babicheva, P.A. Belov. Phys. Rev., A90, 013812 (2014). DOI: 10.1103/PhysRevA.90.013812
  41. A. Delfan, I. Degli-Eredi, J.E. Sipe. J. Opt. Soc. Am. B, 32, 1615 (2015). DOI: 10.1364/JOSAB.32.001615
  42. F. Chiadini, V. Fiumara, A. Scaglione, A. Lakhtakia. J. Opt. Soc. Am., B33 (6), 1197 (2016). DOI: 10.1364/JOSAB.33.001197
  43. L.A. Falkovsky, A.A. Varlamov. Eur. Phys. J. B, 56, 281 (2007). DOI: 10.1140/epjb/e2007-00142-3
  44. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte. Phys. Rev. Lett., 96, 256802 (2006)
  45. P.R. Wallace. Phys. Rev., 71, 622 (1947)
  46. K. Ziegler. Phys. Rev. Lett., 97, 266802 (2006)
  47. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi. Rev. Mod. Phys., 83, 407 (2011)
  48. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys., 81 (1), 109 (2009)
  49. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte. Phys. Rev. B, 75, 165407 (2007). DOI: 10.1103/PhysRevB.75.165407
  50. T. Stauber, N.M.R. Peres, A.K. Geim. Phys. Rev. B, 78, 085432 (2008). DOI: 10.1103/PhysRevB.78.085432
  51. G. Lovat, G.W. Hanson, R. Araneo, P. Burghignoli. Phys. Rev. B, 87, 115429 (2013). DOI: 10.1103/PhysRevB.87.115429
  52. D.W. Berreman. J. Opt. Soc. Am., 62 (4), 502 (1972)
  53. M.V. Davidovich, A.K. Kobets, K.A. Sayapin. Fizika volnovykh protsessov i radiotekhnicheskiye sistemy, 24 (3), 18 (2021) (in Russian). DOI: 10.18469/1810-3189.2021.24.3.18

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru