A quantum capacitance of the graphene/Li3V2(PO4)3 composite during delithiation
Shunaev V.V. 1, Petrunin A.A. 1, Ushakov A.V. 1, Glukhova O.E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: vshunaev@list.ru

PDF
By the ab initio method, the electron-energy structure of the graphene/Li3V2(PO4)3 composite with different mass concentrations was studied. The structures of the composite were explored with the step-by-step extraction of lithium from the supercell of the composite, which simulates its states during the charging of the electrode material. For each stage of delithiation, the distribution of quantum capacitance as a function of the applied voltage was calculated. Based on the analysis of these distributions, it was proposed an approach for estimating the dependence of the accumulated quantum capacitance taking into account changes in composition, which simulates the charging curve in real experiments. The obtained results allow us to draw conclusions about the nature of the quantum capacitance and its relationship with the charge/discharge curves of the electrodes of lithium-ion batteries. Keywords: lithium-ion batteries, quantum capacitance, lithium phosphate, graphene, ab initio.
  1. D. Morgan, G. Ceder, M.Y. Saidi, J. Barker, J. Swoyer, H. Huang, G. Adamson. Chem. Mater., 14, 4684 (2002). DOI: 10.1021/cm020348o
  2. P. Fu, Y. Zhao, Y. Dong, X. Hou. J. Phys. Chem. Solids, 71 (3), 394 (2010). DOI: 10.1016/j.jpcs.2010.01.009
  3. N. Kuganathan, A. Chroneos. Sci. Rep., 9, 333 (2019). DOI: 10.1038/s41598-018-36398-w
  4. L.S. Cahill, R.P. Chapman, J.F. Britten, G.R. Goward. J. Phys. Chem. B, 110 (14), 7171 (2006). DOI: 10.1021/jp057015+
  5. A. Castets, D. Carlier, K. Trad, C. Delmas, M. Menetrier. J. Phys. Chem. C, 114 (44), 19141 (2010). DOI: 10.1021/jp106871z
  6. H. Huo, Z. Lin, D. Wu, G. Zhong, J. Shao, X. Xu, B. Xie, Y. Ma, C. Dai, C. Du, P. Zuo, G. Yin. ACS Appl. Energy Mater., 2 (5), 3692 (2019). DOI: 10.1021/acsaem.9b00410
  7. M. Ding, M. Zhao, H. Gong, Q. Zheng, X. Song. Ind. Eng. Chem. Res., 58 (2), 790 (2019). DOI: 10.1021/acs.iecr.8b05150
  8. S. Luryi. Appl. Phys. Lett., 52, 501 (1988). DOI: 10.1063/1.99649
  9. V. Shunaev, O. Glukhova. Lubricants, 10 (5), 79 (2022). DOI: 10.3390/lubricants10050079
  10. V.V. Shunaev, O.E. Glukhova. Membranes, 11 (8), 642 (2021). DOI: 10.3390/membranes1108064211
  11. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
  12. A.V. Ivanishchev, A.V. Ushakov, I.A. Ivanishcheva, A.V. Churikov, A.V. Mironov, S.S. Fedotov, N.R. Khasanova, E.V. Antipov. Electrochim. Acta, 230, 479 (2017). DOI: 10.1016/j.electacta.2017.02.009

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru