Wave-diffusion delivery of the HIF-1α protein onto COOH-MWCNTs and regulation of oxygen in biocells
Bobenko N.G. 1, Shunaev V.V. 2, Egorushkin V. E. 1, Glukhova O. E. 2,3
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
2Department of Physics, Saratov State University, Saratov, Russia
3I. M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: nbobenko@ispms.ru, vshunaev@list.ru, oeglukhova@yandex.ru

PDF
Carboxyl-functionalized nitrogen-doped multiwalled carbon nanotubes (COOH-N-MWCNTs) have been successfully used for the delivery of various drugs, genes and proteins. Delivery and controlled release of the HIF-1α protein from the carrier is an important task, since its deficiency or excess leads to the development of hypoxia, cancer, cardiovascular and other diseases. Using the so-called self-consistent-charge density-functional tight-binding method and the quantum equations of motion, it was performed modeling and analysis of the electron-energy properties of the COOH-N-MWCNT/HIF-1α complex, it was determined the structural conditions for the effective attachment and delivery of the HIF-1α protein, it was described the conditions for wave diffusion during delivery and regulation of oxygen concentrations by the HIF-1α protein in biocells. It has been shown that the hybridization of electronic states plays a major role in diffuse relaxation, oxygen regulation, and the possibility of drug delivery. The nature of wave diffusion is determined by the hybridization of the -OH group of the HIF-1α protein and the carboxyl group of COOH-N-MWCNTs. Keywords: carbon nanotubes, hypoxia-induced factor HIF-1α, carboxyl group, electron density functional method in the tight binding approximation, method of quantum equations of motion, wave diffusion.
  1. M. Nakane. J. Intensive Care, 8, 95 (2020). DOI: 10.1186/s40560-020-00505-9
  2. Z. Qing, Y. Qin, Y. Haifeng, W. Wenyi. Genes. Dis., 6 (4), 328 (2019). DOI: 10.1016/j.gendis.2019.10.006
  3. H. Zare, S. Ahmadi, A. Ghasemi, M. Ghanbari. Int. J. Nanomed, 16, 1681 (2021). DOI: 10.2147/IJN.S299448
  4. R. Jha, A. Singh, P.K. Sharma, N.K. Fuloria. J. Drug Deliv. Sci. Technol., 58, 101811 (2020). DOI: 10.1016/j.jddst.2020.101811
  5. M. Darroudi, S.E. Nazari, P. Kesharwani, M. Rezayi, M. Khazaei, A. Sahebkar. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery (Elsevier Ltd., 2023)
  6. A.K. Mehata, A. Setia, Vikas, A.K. Malik, R. Hassani, H.G. Dailah, H.A. Alhazmi, A.A. Albarraq, S. Mohan, M.S. Muthu. Pharmaceutics, 15, 722 (2023). DOI: 10.3390/pharmaceutics15030722
  7. B.O. Murjani, P.S. Kadu, M. Bansod, S.S. Vaidya, M.D. Yadav. Carbon Lett., 32, 1207 (2022). DOI: 10.1007/s42823-022-00364-4
  8. G. Bartholomeusz, P. Cherukuri, J. Kingston, L. Cognet, R. Lemos, T.K. Leeuw, L. Gumbiner-Russo, R.B. Weisman, G. Powis. Nano Res., 2, 279 (2009). DOI: 10.1007/s12274-009-9026-7
  9. Y. Wang, C. Wang, Y. Jia, X. Cheng, Q. Lin, M. Zhu, Y. Lu, L. Ding, Z. Weng, K. Wu. PLoS ONE, 9, e104209 (2014). DOI: 10.1371/journal.pone.0104209
  10. D. Chudoba, M. Jazdzewska, K. udzik, S. Wo oszczuk, E. Juszynska-Ga azka, M. Koscinski. Int. J. Mol. Sci., 22, 12003 (2021). DOI: 10.3390/ijms222112003
  11. J.M. Tan, S. Bullo, S. Fakurazi, M.Z. Hussein. Sci. Rep., 10, 16941 (2020). DOI: 10.1038/s41598-020-73963-8
  12. K.A. Prosolov, E.G. Komarova, E.A. Kazantseva, A.S. Lozhkomoev, S.O. Kazantsev, O.V. Bakina, M.V. Mishina, A.P. Zima, S.V. Krivoshchekov, I.A. Khlusov, Y.P. Sharkeev. Materials, 15, 4643 (2022). DOI: 10.3390/ma15134643
  13. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
  14. V. Shunaev, O. Glukhova. Lubricants, 10 (5), 79 (2022). DOI: 10.3390/lubricants10050079
  15. V.V. Shunaev, O.E. Glukhova. Membranes, 11 (8), 642 (2021). DOI: 10.3390/membranes11080642
  16. M. Gaus, A. Goez, M. Elstner. Chem. Theory Comput., 9 (1), 338 (2012). DOI: 10.1021/ct300849w
  17. R.S. Mulliken. J. Chem. Phys., 23, 1833 (1995). DOI: 10.1063/1.1740588
  18. A.I. Baz', Ya.B.A. Zel'dovich, A.M. Perelomov. Rasseyanie, reaktsii i raspady v nerelyativistskoy kvantovoy mekhanike (Nauka, M., 1971) (in Russian)
  19. A.A. Belosludtseva, N.G. Bobenko, V.E. Egorushkin, P.M. Korusenko, N.V. Melnikova, S.N. Nesov. Synth. Met., 280, 116866 (2021). DOI: 10.1016/j.synthmet.2021.116866
  20. Electronic media. National Center for Biotechnology Information. PubChem Compound Summary for CID 16124726. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/lw6 (Accessed Nov. 25, 2022)
  21. E.M. Lifshitz, L.P. Pitaevskii. Physical Kinetics (Pergamon, London, UK, 1981)
  22. D. Forster. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (CRC Press: Boca Raton, FL, USA, 2018)
  23. Y. Fu, W.J. Kao. Expert Opin Drug Deliv., 7, 429 (2010). DOI: 10.1517/17425241003602259

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru