A model of the propagation of a terahertz pulse through ceramics based on hydroxyapatite
Rezvanova A.E. 1, Kudryashov B.S.1, Skorobogatov D.D.1,2, Ponomarev A.N. 1,2
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Email: ranast@ispms.ru, bsk3@ispms.ru, danilskor1@gmail.com, alex@ispms.ru

PDF
Computer models of transmission of terahertz (THz) radiation through samples of porous composite ceramics based on hydroxyapatite (HA) with carbon nanotubes (CNTs) additives are developed by using finite element method. The models allowed us to estimate the influence of CNTs additives with 0.1 and 0.5 wt.% concentrations on the structure and optical properties of the samples. Optical properties of the model samples, such as refractive index and absorption coefficient, were determined by using the modeling results of the intensity and transmission rate of THz radiation. It was found, that the increasing of the absorption coefficient and the decreasing of the refractive index are observed with an increase of the porosity of the material, which is due to the denser structure of the material with addition of CNTs. The obtained optical parameters of the HA and HA-CNTs samples models have a qualitative agreement with experimental data and with the literature parameters of bone tissues. Keywords: modeling, finite element method, optical properties, porosity.
  1. M.S. Barabashko, M.V. Tkachenko, A.A. Neiman, A.N. Ponomarev, A.E. Rezvanova. Appl. Nanosci., 10, 2601 (2020). DOI: 10.1007/s13204-019-01019-z
  2. R.G. Ribas, V.M. Schatkoski, T.L. do Amaral Montanheiro, B.R.C. deMenezes, C. Stegemann, D.M.G. Leite, G.P. Thim. Ceram. Intern., 45 (17), 21051 (2019). DOI: 10.1016/j.ceramint.2019.07.096
  3. Y. Han, Q. Wei, P. Chang, K. Hu, O.V. Okoro, A. Shavandi, L. Nie. Crystals, 11 (4), 353 (2021). DOI: 10.3390/cryst11040353
  4. T. Zhang, W. Cai, F. Chu, F. Zhou, S. Liang, C. Ma, Y. Hu. Compos. Part A Appl. Sci. Manuf., 128, 105681 (2020). DOI: 10.1016/j.compositesa.2019.105681
  5. E. Fiume, G. Magnaterra, A. Rahdar, E. Vern., F. Baino. Ceramics, 4 (4), 542 (2021). DOI: 10.3390/ceramics4040039
  6. X. Zhao, J. Zheng, W. Zhang, X. Chen, Z. Gui. Ceram. Intern., 46 (6), 7903 (2020). DOI: 10.1016/j.ceramint.2019.12.010
  7. P. Khalid, V.B. Suman. J. Bionanosci., 11 (3), 233 (2017). DOI: 10.1166/jbns.2017.1431
  8. P. Greg, K. Sing. Adsorbciya, udel'naya poverhnost', poristost' (Mir, M., 1984) (in Russian)
  9. O.J. Akinribide, G.N. Mekgwe, S.O. Akinwamide, F. Gamaoun, C. Abeykoon, O.T. Johnsone, P.A. Olubambi. J. Mater. Res. Tech., 21, 712 (2022). DOI: 10.1016/j.jmrt.2022.09.027
  10. A. Wagner, B. Ratzker, S. Kalabukhov, M. Sokol, N. Frage. J. Eur. Cer. Soc., 39 (4), 1436 (2019). DOI: 10.1016/j.jeurceramsoc.2018.11.006
  11. R. Shahmiri, O.C. Standard, J.N. Hart, C.C. Sorrell. J. Prosthet. Dent., 119 (1), 36 (2018). DOI: 10.1016/j.prosdent.2017.07.009
  12. F. Moussy. J. Biomed. Mat. Res. A, 94 (4), 1001 (2010). DOI: 10.1002/jbm.a.32866
  13. A. Faingold, S.R. Cohen, R. Shahar, S. Weiner, L. Rapoport, H.D. Wagner. J. Biomech., 47 (2), 367 (2014). DOI: 10.1016/j.jbiomech.2013.11.022
  14. M.S. Barabashko, M.V. Tkachenko, A.E. Rezvanova, A.N. Ponomarev. Russ. J. Phys. Chem., 95 (5), 1017 (2021). DOI: 10.1134/S0036024421050058
  15. D. Veljovic, G.D. Vukovic, I. Steins, E. Palcevskis, P. Uskokovic, R. Petrovic, D. Jana ckovic. Sci. Sinter., 45 (2), 33 (2013). DOI: 10.2298/SOS1302233V
  16. D. Lahiri, V. Singh, A.K. Keshri, S. Seal, A. Agarwal. Carbon, 48 (11), 3103 (2010). DOI: 10.1016/j.carbon.2010.04.047
  17. S. Mukherjee, B. Kundu, A. Chanda, S. Sen. Ceram. Int., 41 (3), 3766 (2015). DOI: 10.1016/j.ceramint.2014.11.052
  18. B. Henriques, D. Fabris, E. Lopes, A.C. Moreira, I.F. Mantovani, C.P. Fernandes, M.C. Fredel. Adv. Eng. Mater., 24 (1), 2100624 (2022). DOI: 10.1002/adem.202100624
  19. L. Yu, P. Jia, Y. Song, B. Zhao, Y. Pan, J. Wang, H. Cui, R. Feng, H. Li, X. Cui, Z. Gao, X. Fang, L. Zhang. J. Mater. Res. Tech., 18, 3541 (2022). DOI: 10.1016/j.jmrt.2022.04.035
  20. A.S. Nikoghosyan, H. Ting, J. Shen, R.M. Martirosyan, M.Yu. Tunyan, A.V. Papikyan, A.A. Papikyan. J. Contemp. Phys. Arme, 51, 56 (2016). DOI: 10.3103/S1068337216030087
  21. P. Bawuah, T. Ervasti, N. Tan, J.A. Zeitler, J. Ketolainen, K.-E. Peiponen. Int. J. Pharm., 509 (1-2), 439 (2016). DOI: 10.1016/j.ijpharm.2016.06.023
  22. Yu.V. Kistenev, V.V. Nikolaev, O.S. Kurochkina, A.V. Borisov, E.A. Sandykova, N.A. Krivova, D.K. Tuchina, P.A. Timoshina. Opt. Spectr., 126, 523 (2019). DOI: 10.1134/S0030400X19050138
  23. P. Bawuah, D. Markl, D. Farrell, M. Evans, A. Portieri, A. Anderson, D. Goodwin, R. Lucas, J.A. Zeitler. J. Inf. Millim. Te. W., 41, 450 (2020). DOI: 10.1007/s10762-019-006590
  24. D.S. Bezmelnitsin, D.A. Lizunkova, I.A. Shishkin. Vestnik molodyh uchenyh i specialistov Samarskogo un-ta, 1 (16), 261 (2020) (in Russian)
  25. J. Fish, T. Belytschko. A First Course in Finite Elements (John Wiley \& Sons, 313, 2007)
  26. P.E. Sizin. Mining information and analytical bulletin, 5, 43 (2023) (in Russian)
  27. S. Fiocchi, E. Chiaramello, A. Marrella, G. Suarato, M. Bonato, M. Parazzini, P. Ravazzani. PloS one, 17 (9), E0274676 (2022). DOI: 10.1371/journal.pone.0274676
  28. V.V. Dmitriev, T.V. Gandzha, I.M. Dolganov, N.V. Aksenova. Pet. Coal., 59 (4), 429 (2017)
  29. T.V. Gandzha, K.A. Isakov, A.V. Shapovalov. Russ. Phys. J., 65 (4), 663 (2022). DOI: 10.1007/s11182-022-02682-6
  30. COMSOL [Electronic resource] Available at: https://www.comsol.ru/. Date of access: 28.11.2023
  31. Ray Optics Module User's Guide [Electronic resource] https://doc.comsol.com/5.4/doc/com.comsol.help.roptics/Ray OpticsModuleUsersGuide.pdf. Date of access: 28.11.2023
  32. A.E. Rezvanova, B.S. Kudryashov, A.N. Ponomarev, A.I. Knyazkova, V.V. Nikolaev, Y.V. Kistenev. Nanosystems: Phys. Chem. Math., 14 (5), 530 (2023). DOI: 10.17586/2220-8054-2023-14-5-530-538
  33. S.I. Borisenko, O.G. Revinskaya, N.S. Kravchenko, A.V. Chernov. Pokazatel' prelomleniya sveta i metody ego eksperimental'nogo opredeleniya (Izd-vo Tomskogo politekh. un-ta, Tomsk, 2014) (in Russian)
  34. P. Huang, B. Zhou, Q. Zheng, Y. Tian, M. Wang, L. Wang, J. Li, W. Jiang. Adv. Mater., 32 (1), 905951 (2020). DOI: 10.1002/adma.201905951
  35. M. Plazanet, J. Tasseva, P. Bartolini, A. Taschin, R. Torre, C. Combes, C. Rey, A. Di Michele, M. Verezhak, A. Gourrier. PLoS One, 13 (8), E0201745 (2018). DOI: 10.1371/journal.pone.0201745
  36. M. Bessou, B. Chassagne, J.-P. Caumes, C. Pradere, P. Maire, M. Tondusson, E. Abraham. Appl. Opt., 51 (28), 6738 (2012). DOI: 10.1364/AO.51.006738
  37. M.R. Stringer, D.N. Lund, A.P. Foulds, A. Uddin, E. Berry, R.E. Miles, A.G. Davies. Phys. Med. Biol., 50 (14), 3211 (2005). DOI: 10.1088/0031-9155/50/14/001
  38. A.S. Nikoghosyan, J. Shen, H. Ting. Physical Properties of Human Jawbone, Spongy Bone, Collagen and Cerabone Bone Transplantation Material in Range of 0.2 to 2.5 THz, 44th Intern. Conf. on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, IEEE, 1-2, (2019). DOI: 10.1109/IRMMW-THz.2019.8873754
  39. J. Cai, M. Guang, J. Zhou, Y. Qu, H. Xu, Y. Sun, H. Xiong, S. Liu, X. Chen, J. Jin, X. Wu. Opt. Express, 30 (8), 13134 (2022). DOI: 10.1364/OE.452769
  40. Y.C. Sim, I. Maeng, J.-H. Son. Curr. Appl. Phys., 9 (5), 946 (2009). DOI: 10.1016/j.cap.2008.09.008

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru