Effect of anisotropy on thermoelastic stresses in cylindrical gallium oxide crystals grown from a melt
Bakholdin S. I.1, Galaktionov E. V. 1, Krymov V. M. 1
1Ioffe Institute, St. Petersburg, Russia
Email: s.bakholdin@mail.ioffe.ru, evgalakt@mail.ru, V.Krymov@mail.ioffe.ru

PDF
The study of thermal stresses in crystals grown from a melt is of great importance for optimizing growth regimes. The emergence of new promising materials, such as gallium oxide, requires stress calculations taking into account the anisotropy of the thermal and elastic properties of the material. A study was carried out of the influence of anisotropy on the distribution of thermoelastic stresses in thin crystalline rods of gallium oxide. Approximate formulas for the components of the stress tensor are given, obtained using the asymptotic integration of the thermoelasticity equations taking into account rectilinear anisotropy of a general form. A comparison of stress values for two growth directions was carried out. It is shown that choosing the orientation of the growth direction makes it possible to control the magnitude and distribution of thermoelastic stresses that arise in gallium oxide crystals when they are grown from a melt. Keywords: thermoelastic stresses, asymptotic method, anisotropy of thermal and elastic properties.
  1. Z. Galazka, S. Ganschow, K. Irmschera, D. Klimm, M. Albrecht, R. Schewski, M. Petsch, T.Schulz, A. Dittmar, A. Kwasnievwski, R. Grueneberg, S.B. Anooz, A. Popp, U. Juda, I.M. Hanke, Th. Schroeder, M. Bickermann. Progr. Crystal Growth Character. Mater., 67 (1), 100511 (2021). DOI: 10.1016/j.pcrysgrow.2020
  2. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov. Adv. Mater. Sci., 44, 63 (2016)
  3. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann. J. Crystal Growth, 404, 184 (2014). DOI: 10.1016/j.jcrysgro.2014.07.021
  4. Z. Galazka. J. Appl. Phys., 131, 031103 (2022). DOI: 10.1063/5.0076962
  5. J. D. Blevins, K. Stevens, A. Lindsey, G. Foundos, L. Sande. IEEE Transactions on Semicond. Manufacturing, 32 (4), 466 (2019). DOI: 10.1109/TSM.2019.2944526
  6. W. Mu, Z. Jia, Y. Yin, B. Fu, J. Zhang, J. Zhanga, X Tao. Cryst. Eng. Comm., 21, 2762 (2019). DOI: 10.1039/C8CE02189A
  7. W. Miller, K. Bottcher, Z. Galazka, J. Schreuer. Crystals, 7(1), 26 (2017). DOI: 10.3390/cryst7010026
  8. D. Wu, N. Xia, K. Ma, J. Wang, Ch. Li, Z. Jin, H. Zhang, D. Yang. Crystals, 12 (12), 1715 (2022). DOI: 10.3390/cryst12121715
  9. X. Tang, B. Liu, Y. Yu, Sh. Liu, B. Gao. Crystals, 11 (1), 25 (2021). DOI: 10.3390/cryst11010025
  10. P.I. Antonov, S.I. Bakholdin, E.V. Galaktionov, E.V. Tropp, S.P. Nikanorov. J. Crystal Growth, 52 (1), 404 (1981). DOI: 10.1016/0022-0248(81)90226-8
  11. I.E. Zino, E.A. Tropp. Asimptoticheskie metody v zadachakh teorii teploprovodnosti i termouprugosti (Izd-vo LGU, L., 1978). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru