Influence of Langmuir layer on the development of instability of molten metal surface under the influence of laser torch plasma
Bormatov A. A.1, Kozhevin V. M.1, Gurevich S. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: antonbormat@mail.ru
The problem of metal surface instability under the influence of laser plasma in the process of nanosecond laser ablation in vacuum has been considered. To solve the problem, a numerical model of the Langmuir layer is constructed, which is applicable for calculations in the case when the layer thickness is much smaller than the characteristic wavelength of the melt surface perturbation. Analysis of the calculation results allowed us to find linear approximations of the ion pressure and electric field distributions on the metal surface. The use of these approximations allowed us to obtain an analytical criterion for the transition of the surface into an unstable state. It is also shown that the influence of the Langmuir layer leads to a decrease in the action of capillary forces, which can be used to modify the criteria for the development of instability in other mechanisms. Keywords: laser torch plasma, capillary instability, plasma-liquid interaction.
- S.A. Akhmanov, V.I. Emel'yanov, N.I. Koroteev, V.N. Seminogov, Sov. Phys. Usp., 28, 1084 (1985). DOI: 10.1070/PU1985v028n12ABEH003986
- A.B. Brailovsky, I.A. Dorofeev, A.B. Ezersky, V.A. Ermakov, V.I. Luchin, V.E. Semenov, ZhTF, 61 (3), 129 (1991)
- A.B. Brailovsky, S.V. Gaponov, V.I. Luchin, Appl. Phys. A, 61 (1), 81 (1995). DOI: 10.1007/BF01538216
- L.K. Ang, Y.Y. Lau, R.M. Gilgenbach, H.L. Spindler, J.S. Lash, S.D. Kovaleski, J. Appl. Phys., 83 (8), 4466 (1998). DOI: 10.1063/1.367208
- V.M. Kozhevin, D.A. Yavsin, V.M. Kouznetsov, V.M. Busov, V.M. Mikushkin, S.Yu. Nikonov, S.A. Gurevich, A. Kolobov, J. Vac. Sci. Technol. B, 18 (3), 1402 (2000). DOI: 10.1116/1.591393
- D.S. Ilyushenkov, V.I. Kozub, D.A. Yavsin, V.M. Kozhevin, I.N. Yassievich, T.T. Nguyen, E.H. Bruck, S.A. Gurevich, J. Magn. Magn. Mater., 321 (5), 343 (2009). DOI: 10.1016/j.jmmm.2008.09.024
- A.M. Elsied, P.C. Dieffenbach, P.K. Diwakar, A. Hassanein, Spectrochim. Acta B, 143, 26 (2018). DOI: 10.1016/j.sab.2018.02.012
- S. Cai, W. Xiong, F. Wang, Y. Tao, S. Tan, X. Ming, X. Sun, Appl. Surf. Sci., 475, 410 (2019). DOI: 10.1016/j.apsusc.2018.12.117
- A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta B, 58 (11), 1867 (2003). DOI: 10.1016/j.sab.2003.08.004
- A.A. Bormatov, V.M. Kozhevin, S.A. Gurevich, Tech. Phys., 66, 705 (2021). DOI: 10.1134/S1063784221050078
- T.N. Rostovshchikova, E.S. Lokteva, E.V. Golubina, K.I. Maslakov, S.A. Gurevich, D.A. Yavsin, V.M. Kozhevin, in Advanced nanomaterials for catalysis and energy advanced nanomaterials for catalysis and energy (Elsevier, 2019), p. 61--97. DOI: /10.1016/B978-0-12-814807-5.00003-6
- V.V. Vladimirov, P.M. Golovinsky, G.A. Month, ZhTF, 57 (8), 1588 (1987)
- J.T. Holgate, M. Coppins, J. Phys. D: Appl. Phys., 53 (10), 105204 (2020). DOI: 10.1088/1361-6463/ab53fd
- P. Vanraes, A. Bogaerts, J. Appl. Phys., 129 (22), 220901 (2021). DOI: 10.1063/5.0044905
- J.T. Holgate, M. Coppins, J.E. Allen, New J. Phys., 21 (6), 063002 (2019). DOI: 10.1088/1367-2630/ab20fe
- R.N. Franklin, J. Phys. D: Appl. Phys., 36 (22), R309 (2003). DOI: 10.1088/0022-3727/36/22/R01
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.