The ratio of active and reactive losses in drift step recovery diodes depending on their operating mode
Cherenev M. N. 1,2, Kardo-Sysoev A. F. 2, Lyublinsky A. G. 2
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: max50055@icloud.com

PDF
An experimental investigation and numerical modeling have been conducted to study the dependence between energy losses and the density of reverse current during the switching of a silicon p+-p-n-n+-structure (Drift Step Recovery Diode) from the conducting state to the blocking state. The active and reactive components of energy losses were separately calculated, and their ratio was analyzed depending on the switching parameters. It was shown that at low densities of reverse current, the structure can return up to 90% of the energy spent on recovering the voltage across the diode. As the density of reverse current increases, the proportion of active energy loss component increases. Keywords: Drift Step Recovery Diode, nanosecond switch, opening diode switch, power semiconductors.
  1. A.F. Kardo-Sysoev, in Ultra-wideband radar technology, ed. by J.D. Taylor (CRC Press, Boca Raton-London-N.Y.-Washington, 2001), p. 214--299
  2. I.V. Grekhov, V.M. Efanov, A.F. Kardo-Sysoev, S.V. Shenderey, Solid-State Electron., 28 (6), 597 (1985). DOI: 10.1016/0038-1101(85)90130-3
  3. V.A. Ilyin, A.V. Afanasyev, Yu.S. Demin, B.V. Ivanov, A.F. Kardo-Sysoev, V.V. Luchinin, S.A. Reshanov, A. Schoner, K.A. Sergushichev, A.A. Smirnov, Mater. Sci. Forum, 924, 841 (2018). DOI: 10.4028/www.scientific.net/MSF.924.841
  4. I.V. Grekhov, G.A. Mesyats, Phys. Usp., 48 (7), 703 (2005). DOI: 10.1070/pu2005v048n07abeh002471
  5. X. Yang, Y. Li, H. Wang, Z. Li, Z. Ding, J. Appl. Phys., 109 (1), 014917 (2011). DOI: 10.1063/1.3531624
  6. A.G. Lyublinsky, S.V. Korotkov, Y.V. Aristov, D.A. Korotkov, IEEE Trans. Plasma Sci., 41 (10), 2625 (2013). DOI: 10.1109/TPS.2013.2264328
  7. Y. Sharabani, I. Shafir, S. Zoran, A. Raizman, A. Sher, Y. Rosenwaks, D. Eger, IEEE Electron Dev. Lett., 37 (8), 1041 (2016). DOI: 10.1109/LED.2016.2584541
  8. A.G. Lyublinsky, A.F. Kardo-Sysoev, M.N. Cherenev, M.I. Vexler, IEEE Trans. Power Electron., 37 (6), 6271 (2022). DOI: 10.1109/TPEL.2021.3139536
  9. D.M. Caughey, R.E. Thomas, Proc. IEEE, 55 (12), 2192 (1967). DOI: 10.1109/PROC.1967.6123
  10. J. Dorkel, Ph. Leturcq, Solid-State Electron., 24 (9), 821 (1981). DOI: 10.1016/0038-1101(81)90097-6
  11. D.J. Roulston, N.D. Arora, S.G. Chamberlain, IEEE Trans. Electron Dev., 29 (2), 284 (1982). DOI: 10.1109/T-ED.1982.20697
  12. M.E. Law, E. Solley, M. Liang, D.E. Burk, IEEE Electron Dev. Lett., 12 (8), 401 (1991). DOI: 10.1109/55.119145
  13. J.G. Fossum, D.S. Lee, Solid-State Electron., 25 (8), 741 (1982). DOI: 10.1016/0038-1101(82)90203-9

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru