Influence of contact area on memristive characteristics of parylene-based structures in single and crossbar geometry
Shvetsov B.S.1,2, Yuklyaevskikh G.A.2, Chernoglazov K.Yu.1, Emelyanov A.V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
Email: b.shvetsov15@physics.msu.ru

PDF
The key elements of neuromorphic computing systems (NCS) are memristors - resistors with a memory effect - that can be used for simultaneous processing and storage of information. It is promising to create them in crossbar geometry, where memristors are located at the intersections of the transverse electrode buses. In this work, the influence of the area and geometry of contacts on the main memristive characteristics of parylene-based structures is investigated. The results obtained indicate the independence of such memristive characteristics as the switching voltage into the low-resistance (Uset) and high-resistance states (Ureset, as well as the resistance of the samples in the low-resistance (Ron) state, from the contact area. At the same time, resistances in the high-resistance (Roff) state increase with decreasing area, which confirms the single-filament model of resistive switching, and also makes it possible to increase the window of resistance in such structures. Keywords: memristors, resistive switching, neuromorphic systems, parylene.
  1. D. Kuzum. IEEE Nanotechnol. Mag., 12, 4 (2018)
  2. J. Zhu, T. Zhang, Y. Yang, R. Huang. Appl. Phys. Rev., 7, 011312 (2020). https://doi.org/10.1063/1.5118217
  3. Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang. Nat. Rev. Mater., 5, 173 (2020)
  4. Q. Xia, J.J. Yang. Nat. Mater., 18, 309 (2019)
  5. K. Berggren, Q. Xia, K.K. Likharev, D.B. Strukov, H. Jiang, T. Mikolajick, D. Querlioz, M. Salinga, J.R. Erickson, S. Pi, F. Xiong, P. Lin, C. Li, Y. Chen, S. Xiong, B.D. Hoskins, M.W. Daniels, A. Madhavan, J.A. Liddle, J.J. McClelland, Y. Yang, J. Rupp, S.S. Nonnenmann, K.-T. Cheng, N. Gong, M.A. Lastras-Montano, A.A. Talin, A. Salleo, B.J. Shastri, T.F. de Lima, P. Prucnal, A.N. Tait, Y. Shen, H. Meng, C. Roques-Carmes, Z. Cheng, H. Bhaskaran, D. Jariwala, H. Wang, J.M. Shainline, K. Segall, J.J. Yang, K. Roy, S. Datta, A. Raychowdhury. Nanotechnology, 32, 012002 (2021)
  6. A.A. Koroleva, M.G. Kozodaev, Y.Y. Lebedinskii, A.M. Markeev. Nanobiotechnology Reports, 16 (6), 737 (2021). https://doi.org/10.1134/S2635167621060094
  7. M.N. Koryazhkina, D.O. Filatov, S.V. Tikhov, A.I. Belov, D.S. Korolev, A.V. Kruglov, R.N. Kryukov, S.Y. Zubkov, V.A. Vorontsov, D.A. Pavlov, D.I. Tetelbaum, A.N. Mikhaylov, S. Kim. Nanobiotechnology Reports, 16 (6), 745 (2021). https://doi.org/10.1134/S2635167621060100
  8. L.S. Parshina, D.S. Gusev, O.D. Khramova, A.S. Polyakov, N.N. Eliseev, O.A. Novodvorsky. Nanobiotechnology Reports, 16 (6), 829 (2021). https://doi.org/10.1134/S2635167621060185
  9. A.N. Matsukatova, A.I. Iliasov, K.E. Nikiruy, E.V. Kukueva, A.L. Vasiliev, B.V. Goncharov, A.V. Sitnikov, M.L. Zanaveskin, A.S. Bugaev, V.A. Demin, V.V. Rylkov, A.V. Emelyanov. Nanomaterials, 12 (19), 3455 (2022). https://doi.org/10.3390/nano12193455
  10. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki. Nanotechnology, 22, 254003 (2011)
  11. T. Shi, R. Wang, Z. Wu, Y. Sun, J. An, Q. Liu. Small Struct., 2, 2000109 (2021)
  12. Y. Van De Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo. Nat. Electron., 1, 386 (2018)
  13. Y. Li, Z. Wang, R. Midya, Q. Xia, J. Joshua Yang. J. Phys. D: Appl. Phys., 51, 0 (2018)
  14. A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, V.V. Erokhin. Sci. Rep., 9, 10800 (2019)
  15. A.A. Minnekhanov, B.S. Shvetsov, M.M. Martyshov, K.E. Nikiruy, E.V. Kukueva, M.Y. Presnyakov, P.A. Forsh, V.V. Rylkov, V.V. Erokhin, V.A. Demin, A.V. Emelyanov. Org. Electron., 74, 89 (2019)
  16. B.S. Shvetsov, A.N. Matsukatova, A.A. Minnekhanov, A.A. Nesmelov, B.V. Goncharov, D.A. Lapkin, M.N. Martyshov, P.A. Forsh, V.V. Rylkov, V.A. Demin, A.V. Emelyanov. Pis'ma v ZhTF 45, 40 (2019) (in Russian)
  17. J.E. Kim, B. Kim, H.T. Kwon, J. Kim, K. Kim, D.W. Park, Y. Kim. IEEE Access, 10, 109760 (2022)
  18. Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He, R. Huang. Adv. Electron. Mater., 5, 1800852 (2019)
  19. A.N. Matsukatova, A.Y. Vdovichenko, T.D. Patsaev, P.A. Forsh, P.K. Kashkarov, V.A. Demin, A.V. Emelyanov. Nano Res., 16, 3207 (2023)
  20. S. Gi, I. Yeo, M. Chu, S. Kim, B. Lee. ISOCC 2015 --- Int. SoC Des. Conf. SoC Internet Everything, 215 (2016)
  21. B.S. Shvetsov, A.A. Minnekhanov, A.V. Emelyanov, A.I. Ilyasov, Y.V. Grishchenko, M.L. Zanaveskin, A.A. Nesmelov, D.R. Streltsov, T.D. Patsaev, A.L. Vasiliev, V.V. Rylkov, V.A. Demin. Nanotechnology, 33, 255201 (2022)
  22. Z. Tang, Y. Wang, Y. Chi, L. Fang. Electronics, 7, 224 (2018)
  23. V.A. Demin, I.A. Surazhevsky, A.V. Emelyanov, P.K. Kashkarov, M.V. Kovalchuk. J. Comput. Electron., 19, 565 (2020)
  24. K.E. Nikiruy, A.V. Yemelyanov, V.A. Demin, V.V. Rylkov, A.V. Sitnikov, P.K. Kashkarov. Pis'ma v ZhTF 44, 20 (2018) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru