Effect of Hydrogen on the Corrosion Resistance of Duplex Stainless Steel
Petrov A. I. 1, Razuvaeva M. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: An.Petrov@mail.ioffe.ru, M.Razuvaeva@mail.ioffe.ru

PDF
The features of diffusion in two-phase (duplex) stainless steel (DSS), interaction the effect of hydrogen with trap sites in various steel structures, the influence of plastic deformation, local stresses and hydrogen concentrations on localized corrosion and hydrogen embrittlement. Available data indicate that the diffusivity of DSS is insensitive to plastic deformation and increase in dislocation density, but it is influenced by grain boundaries and interfaces α/γ-phases The influence of hydrogen on stability is considered γ-phases, formation of second phases and hydrogen trap semi-coherent grain boundaries. The mechanisms that ensure crack propagation are discussed: brittle, associated with decohesion in the region of maximum hydrostatic stress, and plastic in the austenite phase - due to shear decohesion along the slip plane. Reviewed the influence of the yield stress of duplex steel on the susceptibility to hydrogen embrittlement, as well as on correlation of the steel embrittlement index with the total amount of absorbed hydrogen. Keywords: hydrogen embrittlement, duplex stainless steel, microstructure, hydrogen traps, diffusion, grain and phase boundaries.
  1. R. Silverstein, D. Eliezer. J. Alloys Comp., 720, 451 (2017). DOI: 10.1016/j.jallcom.2017.05.286
  2. R. Silverstein, D. Eliezer. J. Alloys Comp., 644, 280 (2015). DOI: 10.1016/j.jallcom.2015.04.176
  3. E. Barel, G. Ben Hamu, D. Eliezer, L. Wagner. J. Alloys Comp., 468 (1-2), 77 (2009). DOI: 10.1016/j.jallcom.2007.12.104
  4. R. Silverstein, D. Eliezer, B. Glain, D. Moreno. J. Alloys Comp., 648, 601 (2015). DOI: 10.1016/j.jallcom.2015.07.029
  5. L. Claeys, I. De Graeve, T. Depover, K. Verbeken. Mater. Sci. Eng.: A, 797, 140079 (2020). DOI: 10.1016/j.msea.2020.140079
  6. W. Wu, X. Zhang, W. Li, H. Fu, S. Liu, Y. Wang, J. Li. Corrosion Science, 202, 110332 (2022). DOI: 10.1016/j.corsci.2022.110332
  7. E. Owczarek, T. Zakroczymski. Acta Mater., 48, 3059 (2000). DOI: 10.1016/S1359-6454(00)00122-1
  8. R. Silverstein, D. Eliezer, E. Tal-Gutelmacher. J. Alloys Comp., 747, 511 (2018). DOI: 10.1016/j.jallcom.2018.03.066
  9. R. Shi, Y. Ma, Z. Wang, X.-S. Yang, L. Qiao, X. Pang. Acta Mater., 200, 686 (2020). DOI: 10.1016/j.actamat.2020.09.031
  10. D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, C. Elsasser. Phys. Rev. B, 93, 184108 (2016). DOI: 10.1103/PhysRevB.93.184108
  11. T. Bellezze, G. Giuliani, G. Roventi, R. Fratesi, F. Andreatta, L. Fedrizzi. Mater. Corrosion, 67 (8), 831 (2016). DOI: 10.1002/maco.201508708
  12. Wen-Ta Tsai, Jhen-Rong Chen. Corrosion Science, 49 (9), 3659 (2007). DOI: 10.1016/j.corsci.2007.03.035
  13. C. Mendibide, C. Dessolin. Corrosion, 79 (2), 174 (2023). DOI: 10.5006/4225
  14. A.A. EL-Yazgi, D. Hardie. Corrosion Science, 40 (6), 909 (1998). DOI: 10.1016/S0010-938X(98)00022-5
  15. N. Sridhar, J. Kolts. Corrosion, 43 (11), 646 (1987). DOI: 10.5006/1.3583843
  16. T. Bellezze, G. Giuliani, A. Vicere, G. Roventi. Corrosion Science, 130, 113 (2018). DOI: 10.1016/j.corsci.2017.10.012
  17. J. Yang, Q. Wang, K. Guan. Intern. J. Pressure Vessels and Piping, 110, 72 (2013). DOI: 10.1016/j.ijpvp.2013.04.025
  18. R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, E.C. Oliver. Acta Mater., 54 (19), 5027 (2006). DOI: 10.1016/j.actamat.2006.06.035
  19. P. Tao, F. Ye, W. Cen, J. Zhao, Y. Wang, J. Gong. Results in Physics, 16, 102820 (2020). DOI: 10.1016/j.rinp.2019.102820
  20. A.I. Petrov, M.V. Razuvaeva. ZhTF, 92 (10), 1588 (2022). (in Russian). DOI: 10.21883/JTF.2022.10.53251.154-22 [A.I. Petrov, M.V. Razuvaeva. Tech. Phys., 67 (10), 1366 (2020). DOI: 10.21883/TP.2022.10.54364.154-22]
  21. V. Olden, C. Thaulow, R. Johnsen. Mater. Designe, 29, 1934 (2008). DOI: 10.1016/j.matdes.2008.04.026
  22. P. Sofronis, Y. Liang, N. Aravas. Europ. J. Mechanics-A/Solids, 20 (6), 857 (2001). DOI: 10.1016/S0997-7538(01)01179-2
  23. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis. Acta Mater., 165, 734 (2019). DOI: 10.1016/j.actamat.2018.12.014
  24. D.P. Abraham, C.J. Altstetter. Metall. Mater. Trans. A, 26, 2849 (1995). DOI: 10.1007/BF02669643
  25. P. Tao, J. Gong, Y. Wang, W. Cen, J. Zhao. Intern. J. Pressure Vessels and Piping, 180, 104031 (2020). DOI: 10.1016/j.ijpvp.2019.104031
  26. F. Iacoviello, M. Habashi, M. Cavallin. Mater. Sci. Eng.: A, 224, 116 (1997). DOI: 10.1016/S0921-5093(96)10545-1
  27. T. Zakroczymski, A. Glowacka, W. Swiatnicki, Corrosion Science, 47, 1403 (2005). DOI: 10.1016/j.corsci.2004.07.036

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru