Investigation of the magnetic-impedance properties of CuO nanoparticles obtained in a low-pressure arc discharge plasma
Ushackov A. V. 1, Fedorov L.Yu. 1
1Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
Email: ushackov@mail.ru, 1401-87@mail.ru

PDF
CuO nanoparticles obtained in a low-pressure arc discharge plasma followed by annealing in an oxygen atmosphere at 500oC were studied by X-ray diffraction and transmission electron microscopy. The formation of irregularly shaped nanoparticles in the size range of 5-30 nm was found. The Rietveld refinement confirmed the formation of a monoclinic CuO phase with an average crystallite size of ~21 nm. The temperature dependences of the magnetization and permittivity of CuO nanoparticles have been studied. They show antiferromagnetic behavior with a Neel temperature of 230 K and frequency-dependent dispersion behavior in the temperature range of 100-200 K at an external magnetic field induction of 0-1.3 T. The dielectric relaxation mechanism is analyzed and found to follow the Arrhenius behavior. It is shown that hopping conductivity with a variable hop length more accurately describes charge transport in CuO nanoparticles. A magnetodielectric response of about 2.5 was observed at a frequency of 12 kHz at a temperature of 150 K in a magnetic field of 1.3 T. Keywords: vacuum arc, oxides, nanoparticles, magnetodielectric effect.
  1. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Progr. Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
  2. S. Steinhauer. Chemosensors, 9 (3), 51 (2021). DOI: 10.3390/chemosensors9030051
  3. A. Angi, D. Sanli, C. Erkey, O. Birer. Ultrasonics Sonochemistry, 21 (2), 854 (2014). DOI: 10.1016/j.ultsonch.2013.09.006
  4. A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullaned, K. Kalantar-zadeh. J. Mater. Chem. C, 2, 5247 (2014). DOI: 10.1039/C4TC00345D
  5. J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer. Appl. Phys. Rev., 9, 011315 (2022). DOI: 10.1063/5.0078037
  6. X. Wang, L. de'Medici, A.J. Millis. Phys. Rev. B, 83, 094501 (2011). DOI: 10.1103/PhysRevB.83.094501
  7. Yu.P. Sukhorukov, N.N. Loshkareva, A.S. Moskvin, V.L. Arbuzov, A.S. Ovchinnikov, N.M. Chebotaev, A.A. Samokhvalov. FTT, 39 (12), 2141 (1997). (in Russian)
  8. J. Leitner, D. Sedmidubsky, O. Jankovsky. Materials, 12 (20), 3355 (2019). DOI: 10.3390/ma12203355
  9. Y. Zhu, Z. Zhuang, Z. Liu, Z. Guo, X. Huang. J. Electroanalytical Chem., 936, 117374 (2023). DOI: 10.1016/j.jelechem.2023.117374
  10. I.V. Karpov, A.V. Ushakov, V.G. Demin, E.A. Goncharova, A.A. Shaihadinov. JOM, 72, 3952 (2020). DOI: 10.1007/s11837-020-04221-5
  11. A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.A. Goncharova, M.V. Brungardt, V.G. Demin. Tech. Phys., 67 (15), 2410 (2021). DOI: 10.21883/TP.2022.15.55268.157-21
  12. E. Batsaikhan, C.-H. Lee, H. Hsu, C.-M. Wu, J.-C. Peng, M.-H. Ma, S. Deleg, W.-H. Li. ACS Omega, 5 (8), 3849 (2020). DOI: 10.1021/acsomega.9b02913
  13. A.A. Samokhvalov, T.I. Arbuzova, V.V. Osipov, N.A. Viglin, S.V. Naumov, N.I. Solin, B.A. Gizhevsky, I.B. Smolyak, V.A. Teplov, V.P. Pilyugin. FTT, 38 (11), 3277 (1996). (in Russian)
  14. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, L.Yu. Fedorov. Phys. Solid State, 57 (5), 919 (2015). DOI: 10.1134/S1063783415050303
  15. H.C.R. Bitra, A.V. Rao, K.S. Babu, G.N. Rao. Mater. Chem. Phys., 254, 123379 (2020). DOI: 10.1016/j.matchemphys.2020.123379
  16. Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, V. Skumryev. Nature Commun., 7, 10295 (2016). DOI: 10.1038/ncomms10295
  17. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov. Vacuum, 133, 25 (2016). DOI: 10.1016/j.vacuum.2016.08.007
  18. L.Yu. Fedorov, I.V. Karpov, A.V. Ushakov, A.A. Lepeshev. Inorgan. Mater.: Appl. Res., 9 (2), 323 (2018). DOI: 10.1134/S2075113318020107
  19. H.M. Rietveld. J. Appl. Cryst., 2, 65 (1969)
  20. G. Doring, C. Sternemann, A. Kaprolat, A. Mattila, K. Hamalainen, W. Schulke. Phys. Rev. B, 70, 085115 (2004). DOI: 10.1103/PhysRevB.70.085115
  21. T.I. Arbuzova, S.V. Naumov, V.L. Arbuzov, K.V. Shalnov, A.E. Ermakov, A.A. Mysik. FTT, 45 (2), 290 (2003). (in Russian)
  22. A.A. Lepeshev, N.A. Drokin, A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.P. Bachurina. J. Mater. Sci.: Mater. Electron., 29 (14), 12118 (2018). DOI: 10.1007/s10854-018-9319-2
  23. O.Z. Yanchevskii, O.I. V'yunov, A.G. Belous, L.L. Kovalenko. J. Alloys Compounds, 874, 159861 (2021). DOI: 10.1016/j.jallcom.2021.159861
  24. M.M. Ahmad, A. Alshoaibi, S.A. Ansari, T.S. Kayed, H.A. Khater, H.M. Kotb. Materials, 15 (9), 3173 (2022). DOI: 10.3390/ma15093173
  25. J. Wu, C.-W. Nan, Y. Lin, Y. Deng. Phys. Rev. Lett., 89 (21), 217601 (2002). DOI: 10.1103/PhysRevLett.89.217601
  26. L. Zhang, Z.-J. Tang. Phys. Rev. B, 70, 174306 (2004). DOI: 10.1103/PhysRevB.70.174306
  27. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)
  28. S. Mukherjee, S. Chatterjee, S. Rayaprol, S.D. Kaushik, S. Bhattacharya, P.K. Jana. J. Appl. Phys., 119, 134103 (2016). DOI: 10.1063/1.4945318

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru