Epitaxial growth of highly stressed InGaAs/InAlAs layers on InP substrates by molecular-beam epitaxy
Andryushkin V. V.1, Novikov I. I.1, Gladyshev A. G.1, Babichev A. V.2, Karachinsky L. Ya.1, Dudelev V. V.2, Sokolovskii G. S.2, Egorov A. Yu.3
1 ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: vvandriushkin@itmo.ru

PDF
In this paper we present the study of the features of epitaxial growth highly stressed superlattices based on highly stressed thin InGaAs/InAlAs layers on InP substrates by the molecular beam epitaxy. It was shown that the growth rates of the InGaAs and InAlAs bulk layers lattice-matched to InP substrates do not allow us to precisely determine the growth rates of thin highly stressed In0.36Al0.64As/In0.67Ga0.33As strain compensated superlattices and the error is about 10 percent. The effect is related to the difference in the growth temperatures of InGaAs and InAlAs bulk layers, which affects the intensity of indium evaporation from the growth surface. Keywords: molecular-beam epitaxy, superlattice, quantum-cascade lasers.
  1. I.I. Novikov, A.V. Babichev, E.S. Kolodeznyi, A.S. Kurochkin, A.G. Gladyshev, V.N. Nevedomsky, S.A. Blokhin, A.A. Blokhin, A.M. Nadtochiy. Mater. Phys. Mech., 29 (1), 76 (2016)
  2. C. Silvestri, X. Qi, T. Taimre, K. Bertling, A.D. Rakic. APL Phot., 8 (2), 020902 (2023). DOI: 10.1063/5.0134539
  3. B. Meng, M. Singleton, M. Shahmohammadi, F. Kapsalidis, R. Wang, M. Beck, J. Faist. Optica, 7 (2), 162 (2020). DOI: 10.1364/OPTICA.377755
  4. P. Micheletti, J. Faista, T. Olariu, U. Senica, M. Beck, G. Scalari. APL Phot. Optica, 6 (10), 106102 (2021). DOI: 10.1063/5.0063141
  5. A.E. Zhukov, G.E. Cirlin, R.R. Reznik, Yu.B. Samsonenko, A.I. Khrebtov, M.A. Kaliteevski, K.A. Ivanov, N.V. Kryzhanovskaya, M.V. Maximov, Zh.I. Alferov. Semiconductors, 50, 662 (2016). DOI: 10.1134/S1063782616050262
  6. G.E. Cirlin, R.R. Reznik, A.E. Zhukov, R.A. Khabibullin, K.V. Maremyanin, V.I. Gavrilenko, S.V. Morozov. Semiconductors, 54, 1092 (2020). DOI: 10.1134/S1063782620090298
  7. H.E. Beere, J.R. Freeman, O.P. Marshall, C.H. Worrall, D.A. Ritchie. J. Cryst. Growth, 311 (7), 1923 (2009). DOI: 10.1016/j.jcrysgro.2008.11.053
  8. L. Consolino, S. Bartalini, H.E. Beere, D.A. Ritchie, M.S. Vitiello, P. Natale. Sensors, 13 (3), 3331 (2013). DOI: 10.3390/s130303331
  9. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M.S. Vitiello, R. Cicchi, F. Pavone, P. Natale. Sci. Rep., 5 (1), 13566 (2015). DOI: 10.1038/srep13566
  10. N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, H. Hubers. Sensors, 19 (12), 2719 (2019). DOI: 10.3390/s19122719
  11. A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photon., 15 (1), 16 (2021). DOI: 10.1038/s41566-020-00707-5
  12. F. Wang, X. Qi, Z. Chen, M. Razeghi, S. Dhillon. Micromachines, 13 (12), 2063 (2022). DOI: 10.3390/mi13122063
  13. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, C.K.N. Patel. PNAS, 107 (44), 18799 (2010). DOI: 10.1073/pnas.1013250107
  14. M. Suttinger, R. Kaspi, A. Lyakh. High-brightness Quantum Cascade Lasers. Mid-Infrared Optoelectronics: Materials, Devices, and Applications (Woodhead Publ., Cambridge, UK. 181, 2020), DOI: 10.1016/b978-0-08-102709-7.00005-x
  15. A.Yu. Egorov, A.V. Babichev, L.Ya. Karachinsky, I.I. Novikov, E.V. Nikitina, M. Tchernycheva, A.N. Sofronov, D.A. Firsov, L.E. Vorobjev, N.A. Pikhtin, I.S. Tarasov. Semiconductors, 49, 1527(2015). DOI: 10.1134/S106378261511007X
  16. A.V. Babichev, A.G. Gladyshev, V.V. Dyudelev, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, S.O. Slipchenko, A.V. Lutetsky, N.A. Pikhtin, G.S. Sokolovsky, A.Yu. Egorov. PZhTF, 46 (9), 35 (2020). (in Russian). DOI: 10.21883/PJTF.2021.24.51800.19014
  17. D.A. Kolosovsky, D.V. Dmitriev, A.I. Toropov, A.M. Gilinsky, T.A. Gavrilova, A.S. Kozhukhov, K.S. Zhuravlev. Tezisy dokladov XIV Rossijskoj konferentsii po fizike poluprovodnikov (Novocibirsk, Rossijskaya Federatsiya, 2019). 108. (in Russian)
  18. L. Boulley, T. Maroutian, P. Goulain, A. Babichev, A. Egorov, L. Li, E. Linfield, R. Colombelli, A. Bousseksou. AIP Adv., 13 (1), 015315(2023). DOI: 10.1063/5.0111159
  19. A.V. Babichev, A.G. Gladyshev, A.V. Filimonov, V.N. Nevedomskii, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, A. Bousseksou, A.Yu. Egorov. Tech. Phys. Lett., 43, 666 (2017). DOI: 10.1134/S1063785017070173
  20. G.J. Davies, R. Heckingbottom, H. Ohno, C.E.C. Wood, A.R. Calawa. Appl. Phys. Lett., 37 (3), 290 (1980). DOI: 10.1063/1.91910
  21. T. Mozume, I. Ohbu. Jpn. J. Appl. Phys., 31 (10R), 3277(1992). DOI: 10.1143/JJAP.31.3277
  22. K. Radhakrishnan, S.F. Yoon, R. Gopalakrishnan, K.L. Tan. J. Vac. Sci. Technol. A., 12, 1124 (1994). DOI: 10.1116/1.579176
  23. P. Thompson, Y. Li, J.J. Zhou, D.L. Sato, L. Flanders, H.P. Lee. Appl. Phys. Lett., 70, 1605 (1997). DOI: 10.1063/1.118629
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru