Epitaxial growth of highly stressed InGaAs/InAlAs layers on InP substrates by molecular-beam epitaxy
Andryushkin V. V.1, Novikov I. I.1, Gladyshev A. G.1, Babichev A. V.2, Karachinsky L. Ya.1, Dudelev V. V.2, Sokolovskii G. S.2, Egorov A. Yu.3
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: vvandriushkin@itmo.ru
In this paper we present the study of the features of epitaxial growth highly stressed superlattices based on highly stressed thin InGaAs/InAlAs layers on InP substrates by the molecular beam epitaxy. It was shown that the growth rates of the InGaAs and InAlAs bulk layers lattice-matched to InP substrates do not allow us to precisely determine the growth rates of thin highly stressed In0.36Al0.64As/In0.67Ga0.33As strain compensated superlattices and the error is about 10 percent. The effect is related to the difference in the growth temperatures of InGaAs and InAlAs bulk layers, which affects the intensity of indium evaporation from the growth surface. Keywords: molecular-beam epitaxy, superlattice, quantum-cascade lasers.
- I.I. Novikov, A.V. Babichev, E.S. Kolodeznyi, A.S. Kurochkin, A.G. Gladyshev, V.N. Nevedomsky, S.A. Blokhin, A.A. Blokhin, A.M. Nadtochiy. Mater. Phys. Mech., 29 (1), 76 (2016)
- C. Silvestri, X. Qi, T. Taimre, K. Bertling, A.D. Rakic. APL Phot., 8 (2), 020902 (2023). DOI: 10.1063/5.0134539
- B. Meng, M. Singleton, M. Shahmohammadi, F. Kapsalidis, R. Wang, M. Beck, J. Faist. Optica, 7 (2), 162 (2020). DOI: 10.1364/OPTICA.377755
- P. Micheletti, J. Faista, T. Olariu, U. Senica, M. Beck, G. Scalari. APL Phot. Optica, 6 (10), 106102 (2021). DOI: 10.1063/5.0063141
- A.E. Zhukov, G.E. Cirlin, R.R. Reznik, Yu.B. Samsonenko, A.I. Khrebtov, M.A. Kaliteevski, K.A. Ivanov, N.V. Kryzhanovskaya, M.V. Maximov, Zh.I. Alferov. Semiconductors, 50, 662 (2016). DOI: 10.1134/S1063782616050262
- G.E. Cirlin, R.R. Reznik, A.E. Zhukov, R.A. Khabibullin, K.V. Maremyanin, V.I. Gavrilenko, S.V. Morozov. Semiconductors, 54, 1092 (2020). DOI: 10.1134/S1063782620090298
- H.E. Beere, J.R. Freeman, O.P. Marshall, C.H. Worrall, D.A. Ritchie. J. Cryst. Growth, 311 (7), 1923 (2009). DOI: 10.1016/j.jcrysgro.2008.11.053
- L. Consolino, S. Bartalini, H.E. Beere, D.A. Ritchie, M.S. Vitiello, P. Natale. Sensors, 13 (3), 3331 (2013). DOI: 10.3390/s130303331
- M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M.S. Vitiello, R. Cicchi, F. Pavone, P. Natale. Sci. Rep., 5 (1), 13566 (2015). DOI: 10.1038/srep13566
- N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, H. Hubers. Sensors, 19 (12), 2719 (2019). DOI: 10.3390/s19122719
- A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photon., 15 (1), 16 (2021). DOI: 10.1038/s41566-020-00707-5
- F. Wang, X. Qi, Z. Chen, M. Razeghi, S. Dhillon. Micromachines, 13 (12), 2063 (2022). DOI: 10.3390/mi13122063
- A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, C.K.N. Patel. PNAS, 107 (44), 18799 (2010). DOI: 10.1073/pnas.1013250107
- M. Suttinger, R. Kaspi, A. Lyakh. High-brightness Quantum Cascade Lasers. Mid-Infrared Optoelectronics: Materials, Devices, and Applications (Woodhead Publ., Cambridge, UK. 181, 2020), DOI: 10.1016/b978-0-08-102709-7.00005-x
- A.Yu. Egorov, A.V. Babichev, L.Ya. Karachinsky, I.I. Novikov, E.V. Nikitina, M. Tchernycheva, A.N. Sofronov, D.A. Firsov, L.E. Vorobjev, N.A. Pikhtin, I.S. Tarasov. Semiconductors, 49, 1527(2015). DOI: 10.1134/S106378261511007X
- A.V. Babichev, A.G. Gladyshev, V.V. Dyudelev, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, S.O. Slipchenko, A.V. Lutetsky, N.A. Pikhtin, G.S. Sokolovsky, A.Yu. Egorov. PZhTF, 46 (9), 35 (2020). (in Russian). DOI: 10.21883/PJTF.2021.24.51800.19014
- D.A. Kolosovsky, D.V. Dmitriev, A.I. Toropov, A.M. Gilinsky, T.A. Gavrilova, A.S. Kozhukhov, K.S. Zhuravlev. Tezisy dokladov XIV Rossijskoj konferentsii po fizike poluprovodnikov (Novocibirsk, Rossijskaya Federatsiya, 2019). 108. (in Russian)
- L. Boulley, T. Maroutian, P. Goulain, A. Babichev, A. Egorov, L. Li, E. Linfield, R. Colombelli, A. Bousseksou. AIP Adv., 13 (1), 015315(2023). DOI: 10.1063/5.0111159
- A.V. Babichev, A.G. Gladyshev, A.V. Filimonov, V.N. Nevedomskii, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, A. Bousseksou, A.Yu. Egorov. Tech. Phys. Lett., 43, 666 (2017). DOI: 10.1134/S1063785017070173
- G.J. Davies, R. Heckingbottom, H. Ohno, C.E.C. Wood, A.R. Calawa. Appl. Phys. Lett., 37 (3), 290 (1980). DOI: 10.1063/1.91910
- T. Mozume, I. Ohbu. Jpn. J. Appl. Phys., 31 (10R), 3277(1992). DOI: 10.1143/JJAP.31.3277
- K. Radhakrishnan, S.F. Yoon, R. Gopalakrishnan, K.L. Tan. J. Vac. Sci. Technol. A., 12, 1124 (1994). DOI: 10.1116/1.579176
- P. Thompson, Y. Li, J.J. Zhou, D.L. Sato, L. Flanders, H.P. Lee. Appl. Phys. Lett., 70, 1605 (1997). DOI: 10.1063/1.118629
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.