Defect-assisted tunneling via Ni/n-GaN Schottky barriers
Bochkareva N. I.1, Shreter Y. G.1
1Ioffe Institute, St. Petersburg, Russia
Email: y.shreter@mail.ioffe.ru

PDF
Schottky barriers on GaN is considered on the basis of an analysis of the features of the current-voltage characteristics of Ni/n-GaN diodes. It is found that the forward I-V characteristics on a semilogarithmic scale have the form of curves with steps at biases corresponding to the Gaussian bands of localized states of defects in the GaN band gap. It is shown that the experimental current-voltage characteristics are in agreement with a simple physical model that takes into account the thinning of the Schottky barrier due to the space charge of ionized deep centers, which stimulates the concentration of the electric field near the Schottky contact and tunneling of electrons by hopping between local centers through the near-contact layer. At forward biases, this causes an exponential increase in the tunneling current of electrons thermally activated to an energy corresponding to the peak of the Gaussian band. The recharging of the states of the Gaussian band is accompanied by a decrease in the probability of tunneling and the appearance of a current plateau on the forward lg I(Vj) curves. An increase in the space charge of deep centers under reverse bias leads to tunneling leakage and limits the breakdown voltage. Keywords: gallium nitride, deep centers, Gaussian impurity bands, space charge, color centers.
  1. Y. Sun, X. Kang, Y. Zheng, J. Lu, X. Tian, K. Wei, H. Wu, W. Wang, X. Liu, G. Zhang. Electronics, 8, 575 (2019). DOI: 10.3390/electronics8050575
  2. R. Chu. Appl. Phys. Lett., 116, 090502 (2020). DOI: 10.1063/1.5133718
  3. R.C. Sharma, R. Nandal, N. Tanwar, R. Yadav, J. Bhardwaj, A. Verma. J. Physics: Conf. Ser., 2426, 012008 (2023). DOI: 10.1088/1742-6596/2426/1/012008
  4. H. Morkoc. Handbook of Nitride Semiconductors and Devices (Weinheim: WILEY-VCH Verlag GmbH \& Co. KGaA, 2008), v. 2, p. 24
  5. D. Yan, J. Jiao, J. Ren, G. Yang, X. Gu. J. Appl. Phys., 114, 144511 (2013). DOI: 10.1063/1.4824296
  6. Y. Wang, H. Xu, S. Alur, Y, Sharma, F. Tong, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, G. Wheeler, M. Johnson, A.A. Allerman, A. Hanser, T. Paskova, E.A. Preble, K.R. Evans. Phys. Stat. Sol. (c), 8 (7-8), 2430 (2011). DOI: 10.1002/pssc.201001158
  7. H. Hasegawa, M. Akazawa. J. Korean Phys. Soc., 55, 1167 (2009)
  8. P. Reddy, S. Washiyama, F. Kaess, M.H. Breckenridge, L.H. Hernandez-Balderrama, B.B. Haidet, D. Alden, A. Franke, B. Sarkar, E. Kohn, R. Collazo, Z. Sitar. J. Appl. Phys., 119, 145702 (2016). DOI: 10.1063/1.4945775
  9. S.Y. Karpov, D.A. Zakheim, W.V. Lundin, A.V. Sakharov, E.E. Zavarin, P.N. Brunkov, E.Y. Lundina, A.F. Tsatsulnikov. Semicond. Sci. Technol., 33, 025009 (2018). DOI: /10.1088/1361-6641/aaa603
  10. E.V. Kalinina, N.I. Kuznetsov, V.A. Dmitriev, K.G. Irvine, C.H. Carter. J. Electron. Mat., 25 (5), 831 (1996). DOI: 10.1007/BF02666644
  11. A. Kumar, M. Latzel, S. Christiansen, V. Kumar, R. Singh. Appl. Phys. Lett., 107, 093502 (2015). DOI: 10.1063/1.4929829
  12. C.H. Qiu, C. Hoggatt, W. Melton, M.W. Leksono, J.I. Pankove. Appl. Phys. Lett., 66 (20), 2712 (1995). DOI: 10.1063/1.113497
  13. O. Ambacher, W. Reiger, P. Ansmann, H. Angerer, T.D. Moustakas, M. Stutzmann. Sol. St. Commun., 97 (5), 365 (1996). DOI: 10.1016/0038-1098(95)00658-3
  14. P. Perlin, M. Osinski, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, P. Sartori. Appl. Phys. Lett., 69 (12), 1680 (1996)
  15. J.R. Lang, N.G. Young, R.M. Farrell, Y.R. Wu, J.S. Speck. Appl. Phys. Lett., 101, 181105 (2012)
  16. H. Zhang, E.J. Miller, E.T. Yu. J. Appl. Phys., 99, 023703 (2006)
  17. X.M. Shen, D.G. Zhao, Z.S. Liu, Z.F. Hu, H. Yang, J.W. Liang. Sol. St. Electron., 49, 847 (2005). DOI: 10.1016/j.sse.2005.02.003
  18. R.X. Wang, S.J. Xu, S.L. Shi, C.D. Beling, S. Fung, D.G. Zhao, H. Yang, X.M. Tao. Appl. Phys. Lett., 89, 143505 (2006)
  19. V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, Y. Shreter. Jpn. J. Appl. Phys., 52, 08JE14 (2013). DOI: 10.7567/JJAP.52.08JE14
  20. Tunneling Phenomena in Solids, ed. E. Burstain, S. Lundqvist (Plenium Press, NY., 1969)
  21. S. Nakamura, G. Fasol. The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, NY., 1998), 343 p
  22. S.F. Chichibu, A. Uedono, K. Kojima, H. Ikeda, K. Fujito, S. Takashima, M. Edo, K. Ueno, S. Ishibashi. J. Appl. Phys., 123, 161413 (2018). DOI: 10.1063/1.5030645
  23. M.A. Reshchikov. Appl. Phys., 129, 121101 (2021). DOI: 10.1063/5.0041608
  24. S.F. Chichibu, Y. Kawakami, T. Sota. in Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, ed. by. S. Nakamura, S.F. Chichibu (Taylor \& Francis, L., NY., 2000), ch. 5
  25. N.I. Bochkareva, I.A. Sheremet, Yu.G. Shreter. Semiconductors, 50 (10),1369 (2016). DOI: 0.1134/S1063782616100109
  26. N.I. Bochkareva, Y.G. Shreter. Physics Solid State, 64 (3), 371 (2022). DOI: 10.21883/PSS.2022.03.53193.241
  27. N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, Y.G. Shreter. J. Phys.: Conf. Ser., 1697, 012203 (2020). DOI: 10.1088/1742-6596/1697/1/012203
  28. P.B. Klein, S.C. Binari. J. Phys.: Condens. Matter, 15, R1641 (2003). DOI: 10.1088/0953-8984/15/44/R01
  29. R.J. Molnar, T. Lei, T.D. Moustakas. Appl. Phys. Lett., 62 (1), 72 (1993)
  30. D. Monroe. Phys. Rev. Lett., 54 (2), 146 (1985). DOI: 10.1103/PhysRevLett.54.146
  31. M. Nichus, R. Schwarz. Phys. Stat. Sol. (c), 3 (6), 1637 (2006). DOI: 10.1002/pssc.200565463
  32. A.G. Chynoweth, W.L. Feldmann, R.A. Logan. Phys. Rev., 121 (3), 684 (1961)
  33. L.V. Keldysh. ZhETF, 33 (4), 994 (1957); 34 (4), 962 (1958).(in Russian)
  34. N. Moulin, M. Amara, F. Mandorio, M. Limiti. J. Appl. Phys., 126, 033105 (2019). DOI: 10.1063/1.5104314
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru