Generation of random sequences by switching transverse modes in a quantum cascade laser
Dyudelev V. V. 1, Cherotchenko E. D.1, Mikhailov D. A. 1, Chistyakov D. V. 1, Slipchenko S. O. 1, Lutetskiy A. V. 1, Gladyshev A. G. 2, Babichev A. V. 1, Karachinsky L. Ya. 2, Novikov I. I. 2, Pikhtin N. A. 1, Egorov A. Yu. 3, Kondrashov A. V. 4, Semenov A. A. 4, Sokolovskii G. S. 1, Ustinov A. B. 4
1Ioffe Institute, St. Petersburg, Russia
2Connector Optics LLC, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
4St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: ustinov-rus@mail.ru

PDF
The generation of random bit sequences by switching transverse modes in a quantum cascade laser (QCL) was studied. To receive the radiation, a quantum cascade detector (QCD) made from a QCL heterostructure was used, which provides the possibility of combining them in a photonic integrated circuit. The study was carried out for a QCL pump pulse duration of 130 ns with a repetition rate of 10-100 kHz. It is shown that electrical pulses with a randomly varying voltage value appear at the output of the QCL-QCD optical coupler. Pulses could be converted into random bit sequences using appropriate comparison. Keywords: Integrated optics, quantum cascade laser, random bit sequences.
  1. R.S. Maddocks, S. Matthews, E.W. Walker, C.H. Vincent, J. Phys. E, 5 (6), 542 (1972). DOI: 10.1088/0022-3735/5/6/018
  2. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, M. Varanonuovo, IEEE Trans. Comput., 52 (4), 403 (2003). DOI: 10.1109/TC.2003.1190581
  3. A.B. Ustinov, A.V. Kondrashov, B.A. Kalinikos, Tech. Phys. Lett., 42 (4), 403 (2016). DOI: 10.1134/S1063785016040283
  4. M. Herrero-Collantes, J.C. Garcia-Escartin, Rev. Mod. Phys., 89 (1), 015004 (2017). DOI: 10.1103/RevModPhys.89.015004
  5. O. Spitz, J. Wu, M. Carras, Ch.-W. Wong, F. Grillot, Sci. Rep., 9, 4451 (2019). DOI: 10.1038/s41598-019-40861-7
  6. K. Kim, S. Bittner, Y. Zeng, S. Guazzotti, O. Hess, Q.J. Wang, H. Cao, Science, 371 (6532), 948 (2021). DOI: 10.1126/science.abc2666
  7. B. Schwarz, C.A. Wang, L. Missaggia, T.S. Mansuripur, P. Chevalier, M.K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso, ACS Photon., 4 (5), 1225 (2017). DOI: 10.1021/acsphotonics.7b00133
  8. E. Cherotchenko, V. Dudelev, D. Mikhailov, G. Savchenko, D. Chistyakov, S. Losev, A. Babichev, A. Gladyshev, I. Novikov, A. Lutetskiy, D. Veselov, S. Slipchenko, D. Denisov, A. Andreev, I. Yarotskaya, K. Podgaetskiy, M. Ladugin, A. Marmalyuk, N. Pikhtin, L. Karachinsky, V. Kuchinskii, A. Egorov, G. Sokolovskii, Nanomaterials, 12 (22), 3971 (2022). DOI: 10.3390/nano12223971
  9. V.V. Dudelev, D.A. Mikhailov, V.Yu. Myl'nikov, A.V. Babichev, S.N. Losev, E.A. Kognovitskaya, A.G. Gladyshev, L.Ya. Karachincky, I.I. Novikov, D.V. Densov, S.O. Slipchenko, A.V. Lyutetskii, N.A. Pikhtin, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Tech. Phys. Lett., 46 (11), 1152 (2020). DOI: 10.1134/S106378502011019X
  10. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications (National Institute of Standards and Technology, 2010), NIST special publication 800-22 Rev. 1a. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru