Production of titanium and gold particles by laser ablation of thin films in water
Zhigarkov V. S.1, Ivanovskaya E. V.2, Aiyyzhy K. O.3, Ovcharov A. V.4
1Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Mendeleev University of Chemical Technology, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
4National Research Center “Kurchatov Institute”, Moscow, Russia
Email: vzhigarkov@gmail.com

PDF
Suspensions of metal particles based on titanium and gold were obtained by pulsed laser ablation of thin metal films on glass substrates in contact with water. The particles were characterized by scanning electron microscopy and dynamic light scattering. It is shown that the particles are polydisperse. The particle size varies depending on the of the laser energy. For particles based on titanium, two fractions are distinguished with sizes of 74-180 nm and 510-635 nm. In the case of gold nanoparticles, their size does not exceed 100 nm. However, at the maximum energy of the laser pulse a fraction with a size of 416 ± 28 nm appears. The values of the zeta potentials and the concentration of particle solutions are given. Keywords: pulsed laser ablation, thin films, titanium and gold nanoparticles, dynamic light scattering, scanning electron microscopy.
  1. T. Mocan, C.T. Matea, T. Pop, O. Mosteanu, A.D. Buzoianu, C. Puia, C. Iancu, L. Mocan, J. Nanobiotechnol., 15, 25 (2017). DOI: 10.1186/s12951-017-0260-y
  2. L. Rizzello, P.P. Pompa, Chem. Soc. Rev., 43 (5), 1501 (2014). DOI: 10.1039/C3CS60218D
  3. L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P.M. Vogt, G. Steinhoff, B. Chichkov, Tissue Eng. C, 16 (5), 847 (2010). DOI: 10.1089/ten.tec.2009.0397
  4. V. Zhigarkov, I. Volchkov, V. Yusupov, B. Chichkov, Nanomaterials, 11 (10), 2584 (2021). DOI: 10.3390/nano11102584
  5. C.B. Tovani, C.R. Ferreira, A.M.S. Simao, M. Bolean, L. Coppeta, N. Rosato, M. Bottini, P. Ciancaglini, A.P. Ramos, ACS Omega, 5 (27), 16491 (2020). DOI: 10.1021/acsomega.0c00900
  6. A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Environ. Sci. Technol., 46 (4), 2242 (2012). DOI: 10.1021/es204168d
  7. J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, J. Environ. Sci., 75, 40 (2019). DOI: 10.1016/j.jes.2018.06.010
  8. M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh, W. Fang, M.J. Neo, H.C. Chong, S.M. Tan, S.C.J. Loo, K.W. Ng, J.P. Xie, C.N. Ong, N.S. Tan, D.T. Leong, Nature Commun., 4 (1), 1673 (2013). DOI: 10.1038/ncomms2655
  9. A. Sani, C. Cao, D. Cui, Biochem. Biophys. Rep., 10 (26), 100991 (2021). DOI: 10.1016/j.bbrep.2021.100991
  10. N. Khlebtsov, L. Dykman, Chem. Soc. Rev., 40 (3), 1647 (2011). DOI: 10.1039/C0CS00018C
  11. N.V. Chirkunova, M.V. Dorogov, A.E. Romanov, Tech. Phys. Lett., 49 (6), 5 (2023).
  12. A. Nath, S.S. Laha, A. Khare, Appl. Surf. Sci., 257 (7), 3118 (2011). DOI: 10.1016/j.apsusc.2010.10.126
  13. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A, 79 (4-6), 1127 (2004). DOI: 10.1007/s00339-004-2660-8
  14. P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Surf. Sci., 252 (13), 4373 (2006). DOI: 10.1016/j.apsusc.2005.06.059
  15. V.M. Chudnovskii, V.I. Yusupov, Tech. Phys. Lett., 46 (10), 1024 (2020). DOI: 10.1134/S1063785020100211
  16. B. Salopek, D. Krasic, S. Filipovic, Rudarsko-Geolosko-Naftni Zbornik, 4 (1), 147 (1992). https://hrcak.srce.hr/24757
  17. V.S. Zhigarkov, N.V. Minaev, V.I. Yusupov, Tech. Phys. Lett., 47, 633 (2021). DOI: 10.1134/S1063785021060298
  18. V.S. Zhigarkov, N.V. Minaev, V.I. Yusupov, Quantum Electron., 50 (12), 1134 (2020). DOI: 10.1070/QEL17426.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru