Activity of ZnO microstructures synthesized using microwave plasma in dinitrophenol photodegradation processes
Antipov S. N. 1, Muslimov A.E.2, Ulyankina A.A. 3, Tsarenko A.D.3, Gadzhiev M. Kh. 1, Lavrikov A.S.2, Tyuftyaev A. S. 1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
3Platov State Polytechnic University, Novocherkassk, Rostov oblast, Russia
Email: antipov@ihed.ras.ru, amuslimov@mail.ru, anya-barbashova@yandex.ru, tsarenkoanasteisha@yandex.ru, makhach@mail.ru, astpl@mail.ru

PDF
The activity of nitrogen-containing structures of ZnO synthesized using atmospheric-pressure microwave nitrogen plasma in the processes of photodegradation of 2,4-dinitrophenol under the exposure to sunlight was studied. It was shown that, during the plasma treatment of zinc microparticles, ZnO structures of various micromorphologies ranging in size from hundreds of nanometers to several micrometers are being formed. High photoactivity (rate constant of 0.036 min-1) of synthesized ZnO structures during photodegradation of dinitrophenol under solar radiation was demonstrated. Photoactive ZnO structures synthesized using microwave nitrogen plasma can find application in the processes of mineralization of toxic organic compounds. Keywords: photocatalytic activity, dinitrophenol, microwave plasma, zinc oxide, solar radiation.
  1. A. Bibi, Sh. Bibi, M. Abu-Dieyeh, M.A. Al-Ghouti, J. Clean. Prod., 417, 137810 (2023). DOI: 10.1016/j.jclepro.2023.137810
  2. S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts, 11 (4), 437 (2021). DOI: 10.3390/catal11040437
  3. G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, Z. Li, Nanomaterials, 11 (7), 1804 (2021). DOI: 10.3390/nano11071804
  4. J.-M. Herrmann, Catalys. Today, 53 (1), 115 (1999). DOI: 10.1016/s0920-5861(99)00107-8
  5. K.M. Mohamed, J.J. Benitto, J.J. Vijaya, M. Bououdina, Crystals, 13 (2), 329 (2023). DOI: 10.3390/cryst13020329
  6. R. Kabir, M.A.K. Saifullah, A.Z. Ahmed, S.M. Masum, M.A.I. Molla, J. Compos. Sci., 4 (2), 49 (2020). DOI: 10.3390/jcs4020049
  7. A.E. Muslimov, A.D. Tsarenko, A.S. Lavrikov, A.A. Ulyankina, V.M. Kanevsky, Pisma v ZhTF, 49 (16), 8 (2023). DOI: 10.21883/PJTF.2023.16.55960.19577 (in Russian)
  8. M.A. Hanif, Y.S. Kim, S. Ameen, H.G. Kim, L.K. Kwac, Coatings, 12 (5), 579 (2022). DOI: 10.3390/coatings12050579
  9. V.N. Tikhonov, S.N. Aleshin, I.A. Ivanov, A.V. Tikhonov, J. Phys.: Conf. Ser., 927 (1), 012067 (2017). DOI: 10.1088/1742-6596/927/1/012067
  10. V.N. Tikhonov, I.A. Ivanov, A.V. Tikhonov, Prikladnaya fizika, N 4, 123 (2018). (in Russian)
  11. V.M. Chepelev, A.V. Chistolinov, M.A. Khromov, S.N. Antipov, M.K. Gadzhiev, J. Phys.: Conf. Ser., 1556 (1), 012091 (2020). DOI: 10.1088/1742-6596/1556/1/012091
  12. L.M. Baltin, V.M. Batenin, I.I. Devyatkin, V.R. Lebedeva, N.I. Tsemko, Teplofizika vysokikh temperatur, 9 (6), 1105 (1971). (in Russian)
  13. C.J. Chen, S.Z. Li, Plasma Sources Sci. Technol., 24 (3), 035017 (2015). DOI: 10.1088/0963-0252/24/3/035017
  14. J.F. Garci a, S. Sanchez, R. Metz, Oxid. Met., 69 (5-6), 317 (2008). DOI: 10.1007/s11085-008-9099-9
  15. K.V. Kumar, K. Porkodi, F. Rocha, Catal. Commun., 9 (1), 82 (2008). DOI: 10.1016/j.catcom.2007.05.019
  16. H. Wang, H.-L. Wang, W.-F. Jiang, Z.-Q. Li, Water Res., 43 (1), 204 (2009). DOI: 10.1016/j.watres.2008.10.003

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru