Resonance characteristics of microwave photonic crystals with inclusions in the form of conducting nanolayers
Skripal A. V. 1, Ponomarev D. V. 1, Sharonov V. E. 1
1Saratov State University, Saratov, Russia
Email: skripala_v@info.sgu.ru, 769545.1998@mail.ru

PDF
The resonant characteristics of one-dimensional photonic crystals with the defect of periodicity associated with the effect of microwave radiation resonant tunneling through a conducting nanolayer at frequencies lower than the plasma resonance frequency have been theoretically described and experimentally investigated. The effect of transparency at the defect mode frequency is achieved due to the minimum level of electromagnetic radiation interaction with the conductive nanolayer placed in the electric field strength node of the standing electromagnetic wave inside the defect of the photonic crystal. Keywords: Photonic crystal, nanolayer, resonant tunneling.
  1. D.A. Usanov, V.P. Meshchanov, A.V. Skripal', N.F. Popova, D.V. Ponomarev, M.K. Merdanov, Tech. Phys., 62 (2), 243 (2017). DOI: 10.1134/S106378421702027X
  2. R. Asmatulu, P.K. Bollavaram, V.R. Patlolla, I.M. Alarifi, W.S. Khan, Adv. Compos. Hybrid Mater., 3 (1), 66 (2020). DOI: 10.1007/s42114-020-00135-7
  3. Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, Adv. Mater., 32 (15), 1905279 (2020). DOI: 10.1002/adma.201905279
  4. H. Fan, S. Kaixuan, Z. Dace, L. Rui, Z. Yulu, D. Jianxiong, M. Ling, B. Shaowei, J. Jianjun, IEEE Trans. Electromagn. Compat., 63 (4), 1290 (2021). DOI: 10.1109/TEMC.2021.3050184
  5. J. Zheng, H. Zheng, Y. Pang, B. Qu, Z. Xu, Opt. Express, 31 (3), 3731 (2023). DOI: 10.1364/OE.482992
  6. A.V. Bogatskaya, N.V. Klenov, P.M. Nikiforova, A.M. Popov, A.E. Schegolev, Opt. Spectrosc., 130 (4), 379 (2022). DOI: 10.21883/EOS.2022.04.53722.48-2
  7. A.B. Shvartsburg, Phys. Usp., 50 (1), 37 (2007). DOI: 10.1070/PU2007v050n01ABEH006148
  8. C.H. Liu, N.J. Behdad, Appl. Phys, 113 (6), 064909 (2013). DOI: 10.1063/1.4790584
  9. B. Wang, F. Righetti, M.A. Cappelli, Phys. Plasmas, 25 (3), 031902 (2018). DOI: 10.1063/1.5018422
  10. A.V. Skripal, D.V. Ponomarev, A.A. Komarov, IEEE Trans. Microwave Theory Tech., 68 (12), 5115 (2020). DOI: 10.1109/TMTT.2020.3021412
  11. D.A. Usanov, S.A. Nikitov, A.V. Skripal, D.V. Ponomarev, One-dimensional microwave photonic crystals: new applications (CRC Press, Boca Raton--London--N.Y., 2019). DOI: 10.1201/9780429276231
  12. D.A. Usanov, A.V. Skripal, A.V. Abramov, A.S. Bogolyubov, Tech. Phys., 51 (5), 644 (2006). DOI: 10.1134/S1063784206050173
  13. S. Fan, M.F. Yanik, Z. Wang, S. Sandhu, M.L. Povinelli, J. Light. Technol., 24 (12), 4493 (2006). DOI: 10.1109/JLT.2006.886061
  14. Al.A. Nikitin, An.A. Nikitin, A.B. Ustinov, E. Lahderanta, B.A. Kalinikos, Tech. Phys., 61 (6), 913 (2016). DOI: 10.1134/S106378421606013X.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru