Influence of blowing a jet from a thin tube on the generation of a tornado-like vortex and the intensification of a developing swirling turbulent flow in an inclined groove on a channel wall
Isaev S. A. 1,2, Nikushchenko D. V.1, Janovsky L.S.3, Chulyunin A.Yu.4
1State Marine Technical University, St. Petersburg, Russia
2St. Petersburg State University of Civil Aviation, St. Petersburg, Russia
3Moscow Aviation Institute National Research University, Moscow, Russia
4Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

A numerical study of the effect of blowing a jet from a thin air tube on the vortex motion in an inclined groove on the wall of a plane-parallel channel is performed using StarCCM+ calculation codes. It is shown that in the range of change in the flow rate in the jet from 0 to 0.1% in fractions of the air flow rate in the channel, the blowing of the jet does not affect the self-organized tornado-like vortex in the inlet part of the groove. With an increase in the relative flow rate, the outflowing trickle is gradually drawn in, and, starting from 0.08%, it is completely captured by a helical vortex emerging from the central part of the groove with an inclination angle of 45o. In this case, the swirling flow in the tail part of the groove is intensified due to the resulting pressure drop between the zones of stagnation on the windward slope and rarefaction at the bottom of the groove. Keywords: Separated flow, jet, groove, plane-parallel channel, intensification, numerical simulation. DOI: 10.61011/TPL.2023.09.56714.19660
  1. S. Isaev, M. Gritckevich, A. Leontiev, I. Popov, Acta Astron., 163 (Pt A), 202 (2019). DOI: 10.1016/j.actaastro.2019.01.033
  2. S.A. Isaev, A.B. Mazo, D.V. Nikushchenko, I.A. Popov, A.G. Sudakov, Tech. Phys. Lett., 46 (11), 1064 (2020). DOI: 10.1134/S1063785020110073
  3. S. Isaev, A. Leontiev, Y. Chudnovsky, D. Nikushchenko, I. Popov, A. Sudakov, Energies, 12 (7), 1296 (2019). DOI: 10.3390/en12071296
  4. S.A. Isaev, Fluid Dyn., 57 (5) 558 (2022). DOI: 10.1134/S0015462822050081
  5. S.A. Isaev, Thermophys. Aeromech., 30 (1), 77 (2023). DOI: 10.1134/S0869864323010092
  6. M.A. Zubin, A.F. Zubkov, Fluid Dyn., 57 (1), 77 (2022). DOI: 10.1134/S0015462822010128
  7. S. Isaev, D. Nikushchenko, A. Sudakov, N. Tryaskin, L. Iunakov, A. Usachov, V. Kharchenko, Energies, 15 (19), 7198 (2022). DOI: 10.3390/en15197198
  8. S.A. Isaev, S.V. Guvernyuk, D.V. Nikushchenko, A.G. Sudakov, A.A. Sinyavin, E.B. Dubko, Pis'ma Zh. Tekh. Fiz., 49 (15), 39 (2023) (in Russian). DOI: 10.21883/PJTF.2023.15.55863.19560
  9. A.V. Shchukin, I.Yu. Bulanov, A.V. Il'inkov, A.P.`Kozlov, A.A. Khalatov, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 4, 28 (2004) (in Russian)
  10. H. Chung, K.M. Kim, H.G. Kwon, S. Lee, B.S. Kim, H.H. Cho, Heat Transfer Eng., 35 (6-8), 641 (2014). DOI: 10.1080/01457632.2013.837695
  11. S. Wang, W. Du, L. Luo, D. Qiu, X. Zhang, S. Li, Int. J. Heat Mass Transfer, 117, 1216 (2018). DOI: 10.1016/j.ijheatmasstransfer.2017.10.087
  12. P.A. Durbin, Int. J. Heat Fluid Flow, 17 (1), 9 (1996). DOI: 10.1016/0142-727X(95)00073-Y
  13. V. Venkatakrishnan, in 31st Aerospace Sciences Meeting (Reno, USA,1993), paper AIAA-93-0880. DOI: 10.2514/6.1993-880
  14. J.M. Weiss, J.P. Maruszewski, W.A. Smith, AIAA J., 37 (1), 29 (1999). DOI: 10.2514/2.689
  15. S.A. Isaev, A.Yu. Chulyunin, D.V. Nikushchenko, A.G. Sudakov, A.E. Usachov, High Temp., 59 (1), 106 (2021). DOI: 10.1134/S0018151X21010041.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245