Active superconducting terahertz detector
S. V. Shitov1,2
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2University of Science and Technology (NITU) MISiS", Moscow, Russia

The concept of an active superconducting terahertz detector for array applications is based on the combination of an RFTES bolometer and a microwave preamplifier based on a DC SQUID within the common integrated circuit providing the maximum, theoretically possible, signal transmission from the sensor to the amplifier. The problems associated with the design and positioning of the amplifier, that restrict the functionality and sensitivity of the ultra-low temperature detector, are considered. For the first time, a method for connecting a SQUID amplifier to an RFTES bolometer using the principle of partial loads of a resonator has been proposed and analyzed. The presented electromagnetic model of the active detector is suitable for optimization of RFTES, MKID and other detectors using high-Q superconducting planar resonators. Keywords: RFTES, DC SQUID, low-noise amplifier, parametric amplifier, planar resonator, high-Q resonator, partial load of resonator, electromagnetic modelling. DOI: 10.61011/TP.2023.07.56639.116-23
  1. T.S. Kuhn. Black-Body Theory and the Quantum Discontinuity, 1894-1912. 2nd ed. (Chicago: University of Chicago Press, 1987)
  2. J. Ruhl, P.A.R. Ade, J.E. Carlstrom, et al. Proc. SPIE Int. Soc. Opt. Eng. 5543 (2004). DOI: 10.1117/12.552473
  3. J. Bae, R. Teague, S.M. Andrews et al. The Astrophys. J. Lett., 934 (2), L20 (2022). DOI: 10.3847/2041-8213/ac7fa3
  4. A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K.D. Irwin. Appl. Phys. Lett., 69 (12), 1801 (1996). DOI: 10.1063/1.117491
  5. P.A.J. de Korte, J. Beyer, S. Deiker, G.C. Hilton, K.D. Irwin, M. Macntosh, S.W. Nam, C.D. Reintsema, L.R. Vale. Rev. Sci. Instrum., 74, 3087 (2003). DOI: 10.1063/1.1593809
  6. D.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). DOI: 10.1038/nature02037
  7. T.M. Lanting, H. Cho, J. Clarke, M. Dobbs, A.T. Lee, P.L. Richards, A.D. Smith, H.G. Spieler. IEEE Trans. Appl. Sup., 13 (2), 626 (2003). DOI: 10.1109/TASC.2003.813973
  8. B.S. Karasik, R. Cantor. Appl. Phys. Lett., 98, 193503 (2011). DOI: 10.1063/1.3589367
  9. S.V. Shitov, N.N. Abramov, A.A. Kuzmin, M. Merker, M. Arndt, S. Wuensch, K.S. Ilin, E.V. Erhan, A.V. Ustinov, M. Siegel. IEEE Trans. Appl. Supercond., 25 (3), (2014). DOOI: 10.1063/1.4995981
  10. A.V. Merenkov, V.I. Chichkov, A.E. Ermakov, A.V. Ustinov, S.V. Shitov. Hafnium MEGA Array Detector. Proc. 2019 EUCAS, Glasgow (2019)
  11. A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53081.50HH
  12. M. Mueck, R. McDermott. Supercond. Sci. Technol., 23, 093001 (2010). DOI: 10.1088/0953-2048/23/9/093001
  13. A.B. Zorin. Phys. Rev. Appl., 6, 034006 (2016). DOI: 10.1103/PhysRevApplied.6.034006
  14. C. Mattis, J. Bardeen. Phys. Rev., 111, 412 (1958). DOI: 10.1103/PhysRev.111.412
  15. A. Kuzmin, S.V. Shitov, A. Scheuring, J.M. Meckbach, K.S. Il'in, S. Wuensch, A.V. Ustinov, M. Siegel. IEEE Trans. Terahertz Sci. Techn., 3 (1), 25 (2013). DOI: 10.1109/TTHZ.2012.2236148
  16. Cadence AWR Microwave Office. Electronic source. Available at:
  17. G.V. Prokopenko, S.V. Shitov, I.L. Lapitskaya, V.P. Koshelets, J. Mygind. IEEE Trans. on Appl. Supercond., 13 (2), 1042 (2003). DOI: 10.1109/TASC.2003.814146

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245