Devices and methods for measuring parameters of RFTES bolometers
Kim T. M. 1, A. V. Merenkov 1, An. B. Ermakov 2, L. S. Solomatov 1, V. I. Chichkov 1, S. V. Shitov1,2
1National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia

Several new approaches to the measurement of intrinsic noise and dynamic characteristics of superconducting bolometers based on the RFTES technology are demonstrated. The developed methods were tested with an experimental 550-750 GHz sample at reading frequency of ~1.5 GHz at a temperature of 400 mK. The absorption of thin-film resistive coatings on sapphire and quartz substrates was studied, and the emissivity of the experimental heat source was estimated as ~14%. A shot noise source based on Al/AlOx/Al tunnel junction was developed, and the noise temperature of the 1.35-1.6 GHz buffer amplifier referred to the detector output was determined as ~20 K. The response time of RFTES with a hafnium film sized 6x2x0.08 μm was evaluated as ~3 μs via microwave heat modulation at the second resonance at ~4.2 GHz; the dynamic range at a modulation frequency of 10 kHz was more than 23 dB. The data obtained made it possible to determine the RFTES sensitivity as 1·1017 W/Hz±30%, that coincided with the theoretical value up to the measurement error. Keywords: RFTES, noise equivalent power, response time, dynamic range, blackbody, emissivity, Plancks low, heat modulation, shot noise, electron gas, high-Q resonator, electromagnetic modelling. DOI: 10.61011/TP.2023.07.56640.117-23
  1. T.S. Kuhn. Black-Body Theory and the Quantum Discontinuity, 1894-1912. --- 2nd ed. (Chicago: University of Chicago Press, 1987)
  2. A.V. Uvarov, S.V. Shitov, A.N. Vystavkin. Meas. Tech., 53 (9), 1047 (2010). DOI:10.1007/s11018-010-9617-4
  3. T.M. Kim, S.V. Shitov. Tech. Phys. Lett., 48 (15), 54 (2022). DOI: 10.61011/TP.2023.07.56640.117-23
  4. E.M. Gershenzon, M.E. Gershenzon, G.N. Gol'tsman, A.M. Lyul'kin, A.D. Sernenov, A.V. Sergeev. JETP, 97, 901 (1990)
  5. S.V. Shitov. Tech. Phys. Lett., 37, 932 (2011).
  6. A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov IEEE Trans. Appl. Supercond., 28, 7 (2018). DOI:10.1109/TASC.2018.2827981
  7. A.V. Merenkov, S.V. Shitov, V.I. Chichkov, A.B. Ermakov, T.M. Kim, A.V. Ustinov. Tech. Phys. Lett., 44 (7), 581 (2018). DOI:10.1134/S106378501807012X
  8. P.A.J. de Korte, J. Beyer, S. Deiker, G.C. Hilton, K.D. Irwin, M. MacIntosh, S.W. Nam, C.D. Reintsema, L.R. Vale. Rev. Sci. Instrum. 74, 3087 (2003). DOI: 10.1063/1.1593809
  9. A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022) (in Russian). DOI:10.21883/FTT.2022.10.53081.50HH
  10. A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K. D. Irwin. Appl. Phys. Lett., 69 (12), 1801-1803 (1996). DOI: 10.1063/1.117491
  11. D.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). DOI: 10.1038/nature02037
  12. Cadence AWR Microwave Office. Electronic source. Available at:
  13. B.S. Karasik, R. Cantor. Appl. Phys. Lett., 98, 193503 (2011). DOI: 10.1063/1.3589367
  14. B.L. Altshuler, A.G. Aronov. Modern Problems. Condens. Matter. Sci., 10, 1 (1985). DOI: 10.1016/B978-0-444-86916-6.50007-7

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245