Effect of combined ion and electron irradiation on 2 eV luminescence band in hexagonal boron nitride
Petrov Yu. V.
1, Gogina O. A.
1, Vyvenko O. F.
1, Kovalchuk S.
2, Bolotin K.
21St. Petersburg State University, St. Petersburg, Russia
2Free University of Berlin, Berlin, Germany
Email: y.petrov@spbu.ru
Point defects in wide-bandgap semiconductors, in particular in hexagonal boron nitride, are promising candidates for single-photon emitters, used in quantum informatics. The cathodoluminescence of ion beam induced defects in hexagonal boron nitride, as well as the effect of prolonged electron irradiation on the intensity of the luminescence was investigated. It has been shown that upon the ion irradiation the intensity of both band-to-band emission and defect related emission decreased, and during subsequent electron irradiation the intensity of 2 eV luminescence band increased, whereas the intensity of other bands remained unchanged. Keywords: cathodoluminescence, ion beam irradiation, electron beam irradiation, hexagonal boron nitride DOI: 10.61011/TP.2023.07.56627.62-23
- I. Aharonovich, D. Englund, M. Toth. Nature Photonics, 10, 631 (2016). DOI: 10.1038/NPHOTON.2016.186
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Nature Photonics, 6 (2012). DOI: 10.1038/NPHOTON.2012.75
- R. Bourrellier, S. Meuret, A. Tararan, O. Stephan, M. Kociak, L.H.G. Tizei, A. Zobelli. Nano Lett., 16, 4317 (2016). DOI: 10.1021/acs.nanolett.6b01368
- G. Cassabois, P. Valvin, B. Gil. Nature Photonics, 10, 262 (2016). DOI: 10.1038/nphoton.2015.277
- S. Castelletto, F.A. Inam, S. Sato, A. Boretti. Beilstein J. Nanotechnol. 11, 740-769 (2020). DOI: 10.3762/bjnano.11.61
- A. Vokhmintsev, I. Weinstein, D. Zamyatin. Journal of Luminescence, 208, 363-370 (2019). DOI: 10.1016/j.jlumin.2018.12.036
- N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Favaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J.H. Smet, J. Wrachtrup. Nano Lett., 16, 7037-7045 (2016). DOI: 10.1021/acs.nanolett.6b03268
- J. Ziegler, R. Klaiss, A. Blaikie, D. Miller, V.R. Horowitz, B.J. Aleman. Nano Lett., 19, 2121-2127 (2019). DOI: 10.1021/acs.nanolett.9b00357
- N.-J. Guo, W. Liu, Z.-P. Li, Y.-Z. Yang, S. Yu, Y. Meng, Z.-A. Wang, X.-D. Zeng, F.-F. Yan, Q. Li, J.-F. Wang, J.-S. Xu, Y.-T. Wang, J.-S. Tang, C.-F. Li, G.-C. Guo. ACS Omega, 7, 1733-1739 (2022). DOI: 10.1021/acsomega.1c04564
- Yu.V. Petrov, O.A. Gogina, O.F. Vyvenko, S. Kovalchuk, K. Bolotin, K. Watanabe, T. Taniguchi. Technical Physics, 92 (8), 984-989 (2022) DOI: 10.21883/TP.2022.08.54560.66-22
- G. Grosso, H. Moon, B. Lienhard, S. Ali, D.K. Efetov, M.M. Furchi, P. Jarillo-Herrero, M.J. Ford, I. Aharonovich, D. Englund. Nature Communications, 8, 705 (2017). DOI: 10.1038/s41467-017-00810-2
- S. Choi, T. T. Tran, C. Elbadawi, C. Lobo, X. Wang, S. Juodkazis, G. Seniutinas, M. Toth, I. Aharonovich. ACS Appl. Mater. Interfaces, 8, 29642 (2016). DOI: 10.1021/acsami.6b09875
- F. Bianco, E. Corte, S.D. Tchernij, J. Forneris, F. Fabbri. Nanomaterials 13, 739 (2023). DOI: 10.3390/nano13040739
- H. Zhang, M. Lan, G. Tang, F. Chen, Z. Shu, F. Chend, M. Li. J. Mater. Chem. C, 7, 12211 (2019). DOI: 10.1039/c9tc03695d
- Yu.V. Petrov, O.F. Vyvenko, O.A. Gogina, K. Bolotin, S. Kovalchuk, K. Watanabe, T. Taniguchi. J. Phys.: Conf. Series. 2103 (1), 012065 (2021). DOI: 10.1088/1742-6596/2103/1/012065
- Yu.V. Petrov, O.F. Vyvenko, O.A. Gogina, T.V. Sharov, S. Kovalchuk, K. Bolotin. Bulletin of the Russian Academy of Sciences: Physics. 87, 1455--1461 (2023). DOI: 10.3103/S1062873823703483
- T. Taniguchi, K. Watanabe. Journal of Crystal Growth, 303, 525-529 (2007). DOI: 10.1016/j.jcrysgro.2006.12.061
- M.E. Turiansky, A. Alkauskas, L.C. Bassett, C.G. Van de Walle. Phys. Rev. Lett. 123, 127401 (2019). DOI: 10.1103/PhysRevLett.123.127401
- M.E. Turiansky, C.G. Van de Walle. J. Appl. Phys. 129, 064301 (2021). DOI: 10.1063/5.0040780
- M.E. Turiansky, C.G. Van de Walle. 2D Materials, 8, 024002 (2021). DOI: 10.1088/2053-1583/abe4bb
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instr. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
- T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich. Nature Nanotechnology, 11, 37-42 (2015). DOI: 10.1038/NNANO.2015.242
- F. Wu, T.J. Smart, J. Xu, Y. Ping. Phys. Rev. B, 100, 081407 (2019). DOI: 10.1103/PhysRevB.100.081407
- M. Abdi, J.-P. Chou, A. Gali, M.B. Plenio. ACS Photonics, 5, 1967-1976 (2018). DOI: 10.1021/acsphotonics.7b01442
- M. Kaminska, E.R. Weber. Semiconductors and Semimetals. 38, 59-89 (1993). DOI: 10.1016/S0080-8784(08)62798-2
- T.B. Ngwenya, A.M. Ukpong, N. Chetty. Phys. Rev. B, 84, 245425 (2011). DOI:10.1103/PhysRevB.84.245425
- S.A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T.T. Tran, C. Stampfl, I. Aharonovich, M. Toth, M.J. Ford. Nanoscale, 9, 13575-13582 (2017). DOI: 10.1039/C7NR04270A
- A. Sajid, J.R. Reimers, M.J. Ford. Phys. Rev. B, 97, 064101 (2018). DOI: 10.1103/PhysRevB.97.064101
- A. Sajid, K.S. Thygesen. 2D Mater. 7, 031007 (2020). DOI: 10.1088/2053-1583/ab8f61
- M. Fischer, J.M. Caridad, A. Sajid, S. Ghaderzadeh, M. Ghorbani-Asl, L. Gammelgaard, P. B ggild, K.S. Thygesen, A.V. Krasheninnikov, S. Xiao, M. Wubs, N. Stenger. Science Advances, 7, eabe7138 (2021). DOI: 10.1126/sciadv.abe7138
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.