Effect of combined ion and electron irradiation on 2 eV luminescence band in hexagonal boron nitride
Petrov Yu. V. 1, Gogina O. A.1, Vyvenko O. F. 1, Kovalchuk S.2, Bolotin K.2
1St. Petersburg State University, St. Petersburg, Russia
2Free University of Berlin, Berlin, Germany
Email: y.petrov@spbu.ru

PDF
Point defects in wide-bandgap semiconductors, in particular in hexagonal boron nitride, are promising candidates for single-photon emitters, used in quantum informatics. The cathodoluminescence of ion beam induced defects in hexagonal boron nitride, as well as the effect of prolonged electron irradiation on the intensity of the luminescence was investigated. It has been shown that upon the ion irradiation the intensity of both band-to-band emission and defect related emission decreased, and during subsequent electron irradiation the intensity of 2 eV luminescence band increased, whereas the intensity of other bands remained unchanged. Keywords: cathodoluminescence, ion beam irradiation, electron beam irradiation, hexagonal boron nitride DOI: 10.61011/TP.2023.07.56627.62-23
  1. I. Aharonovich, D. Englund, M. Toth. Nature Photonics, 10, 631 (2016). DOI: 10.1038/NPHOTON.2016.186
  2. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Nature Photonics, 6 (2012). DOI: 10.1038/NPHOTON.2012.75
  3. R. Bourrellier, S. Meuret, A. Tararan, O. Stephan, M. Kociak, L.H.G. Tizei, A. Zobelli. Nano Lett., 16, 4317 (2016). DOI: 10.1021/acs.nanolett.6b01368
  4. G. Cassabois, P. Valvin, B. Gil. Nature Photonics, 10, 262 (2016). DOI: 10.1038/nphoton.2015.277
  5. S. Castelletto, F.A. Inam, S. Sato, A. Boretti. Beilstein J. Nanotechnol. 11, 740-769 (2020). DOI: 10.3762/bjnano.11.61
  6. A. Vokhmintsev, I. Weinstein, D. Zamyatin. Journal of Luminescence, 208, 363-370 (2019). DOI: 10.1016/j.jlumin.2018.12.036
  7. N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Favaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J.H. Smet, J. Wrachtrup. Nano Lett., 16, 7037-7045 (2016). DOI: 10.1021/acs.nanolett.6b03268
  8. J. Ziegler, R. Klaiss, A. Blaikie, D. Miller, V.R. Horowitz, B.J. Aleman. Nano Lett., 19, 2121-2127 (2019). DOI: 10.1021/acs.nanolett.9b00357
  9. N.-J. Guo, W. Liu, Z.-P. Li, Y.-Z. Yang, S. Yu, Y. Meng, Z.-A. Wang, X.-D. Zeng, F.-F. Yan, Q. Li, J.-F. Wang, J.-S. Xu, Y.-T. Wang, J.-S. Tang, C.-F. Li, G.-C. Guo. ACS Omega, 7, 1733-1739 (2022). DOI: 10.1021/acsomega.1c04564
  10. Yu.V. Petrov, O.A. Gogina, O.F. Vyvenko, S. Kovalchuk, K. Bolotin, K. Watanabe, T. Taniguchi. Technical Physics, 92 (8), 984-989 (2022) DOI: 10.21883/TP.2022.08.54560.66-22
  11. G. Grosso, H. Moon, B. Lienhard, S. Ali, D.K. Efetov, M.M. Furchi, P. Jarillo-Herrero, M.J. Ford, I. Aharonovich, D. Englund. Nature Communications, 8, 705 (2017). DOI: 10.1038/s41467-017-00810-2
  12. S. Choi, T. T. Tran, C. Elbadawi, C. Lobo, X. Wang, S. Juodkazis, G. Seniutinas, M. Toth, I. Aharonovich. ACS Appl. Mater. Interfaces, 8, 29642 (2016). DOI: 10.1021/acsami.6b09875
  13. F. Bianco, E. Corte, S.D. Tchernij, J. Forneris, F. Fabbri. Nanomaterials 13, 739 (2023). DOI: 10.3390/nano13040739
  14. H. Zhang, M. Lan, G. Tang, F. Chen, Z. Shu, F. Chend, M. Li. J. Mater. Chem. C, 7, 12211 (2019). DOI: 10.1039/c9tc03695d
  15. Yu.V. Petrov, O.F. Vyvenko, O.A. Gogina, K. Bolotin, S. Kovalchuk, K. Watanabe, T. Taniguchi. J. Phys.: Conf. Series. 2103 (1), 012065 (2021). DOI: 10.1088/1742-6596/2103/1/012065
  16. Yu.V. Petrov, O.F. Vyvenko, O.A. Gogina, T.V. Sharov, S. Kovalchuk, K. Bolotin. Bulletin of the Russian Academy of Sciences: Physics. 87, 1455--1461 (2023). DOI: 10.3103/S1062873823703483
  17. T. Taniguchi, K. Watanabe. Journal of Crystal Growth, 303, 525-529 (2007). DOI: 10.1016/j.jcrysgro.2006.12.061
  18. M.E. Turiansky, A. Alkauskas, L.C. Bassett, C.G. Van de Walle. Phys. Rev. Lett. 123, 127401 (2019). DOI: 10.1103/PhysRevLett.123.127401
  19. M.E. Turiansky, C.G. Van de Walle. J. Appl. Phys. 129, 064301 (2021). DOI: 10.1063/5.0040780
  20. M.E. Turiansky, C.G. Van de Walle. 2D Materials, 8, 024002 (2021). DOI: 10.1088/2053-1583/abe4bb
  21. J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instr. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
  22. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich. Nature Nanotechnology, 11, 37-42 (2015). DOI: 10.1038/NNANO.2015.242
  23. F. Wu, T.J. Smart, J. Xu, Y. Ping. Phys. Rev. B, 100, 081407 (2019). DOI: 10.1103/PhysRevB.100.081407
  24. M. Abdi, J.-P. Chou, A. Gali, M.B. Plenio. ACS Photonics, 5, 1967-1976 (2018). DOI: 10.1021/acsphotonics.7b01442
  25. M. Kaminska, E.R. Weber. Semiconductors and Semimetals. 38, 59-89 (1993). DOI: 10.1016/S0080-8784(08)62798-2
  26. T.B. Ngwenya, A.M. Ukpong, N. Chetty. Phys. Rev. B, 84, 245425 (2011). DOI:10.1103/PhysRevB.84.245425
  27. S.A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T.T. Tran, C. Stampfl, I. Aharonovich, M. Toth, M.J. Ford. Nanoscale, 9, 13575-13582 (2017). DOI: 10.1039/C7NR04270A
  28. A. Sajid, J.R. Reimers, M.J. Ford. Phys. Rev. B, 97, 064101 (2018). DOI: 10.1103/PhysRevB.97.064101
  29. A. Sajid, K.S. Thygesen. 2D Mater. 7, 031007 (2020). DOI: 10.1088/2053-1583/ab8f61
  30. M. Fischer, J.M. Caridad, A. Sajid, S. Ghaderzadeh, M. Ghorbani-Asl, L. Gammelgaard, P. B ggild, K.S. Thygesen, A.V. Krasheninnikov, S. Xiao, M. Wubs, N. Stenger. Science Advances, 7, eabe7138 (2021). DOI: 10.1126/sciadv.abe7138

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru