Study of Si implanted with Zn and irradiated with swift Xe ions using X-ray absorption spectroscopy
Khramov E.V.1,2, Privezentsev V. V.3, Kulikauskas V. S. 4
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
3Federal State Institution "Federal Scientific Center Scientific Research Institute of System Analisys of the Russian Academy of Sciences", Moscow, Russia
4Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

The change in the structure of zinc nanoparticles (NPs) in the Si matrix after irradiation with swift Xe ions is analyzed. Silicon wafers were implanted with 64Zn+ ions at a dose of 5·1016 cm2 and energy of 50 keV at a temperature of 350oC. After implantation in Si, zinc NPs with a size of about 10 nm were formed. Then the samples were irradiated with swift Xe ions with an energy of 167 MeV and fluences of 1013 and 1014 cm-2. The samples were studied by X-ray absorption spectroscopy (XAS) on the K-edge of Zn. According to XANES data, in samples with different Xe fluences, zinc has a similar local environment and exists in the metallic phase. According to EXAFS data, the intense peak of the Fourier transform is in the range of 2-3 Angstrem and corresponds to the split first coordination sphere in the Zn structure. After irradiation with Xe, the intensity of this peak noticeably decreases compared to the sample after Zn implantation, which indicates a very strong disordering of the local structure, which is characteristic of small NPs with sizes less than 5 nm. Keywords: silicon, hot Zn implantation, swift heavy ion irradiation, nanoparticles, XANES, EXAFS. DOI: 10.61011/TPL.2023.06.56377.19418
  1. C. D'Orleans, J.P. Stoquert, C. Estournes, C. Cerruti, J.J. Grob, J.L. Guille, F. Haas, D. Muller, M. Richard-Plouet, Phys. Rev. B, 67 (22), 220101R (2003). DOI: 10.1103/PhysRevB.67.220101
  2. Ion beam modification of solids: ion-solid interaction and radiation damage, ed by W. Wesch, E. Wendler. Springer Ser. in Surface Sciences (Springer, Cham, 2016), vol. 61
  3. F.F. Komarov, O.V. Milchanin, V.A. Skuratov, M.A. Makhavikou, A. Janse van Vuuren, J.N. Neethling, E. Wendler, L.A. Vlasukova, I.N. Parkhomenko, V.N. Yuvchenko, Bull. Russ. Acad. Sci. Phys., 80 (2), 141 (2016). DOI: 10.3103/S106287381602012X
  4. F. Komarov, Phys. Usp., 46 (12), 1253 (2003). DOI: 10.1070/PU2003v046n12ABEH001286
  5. F. Komarov, Phys. Usp., 60 (5), 435 (2017). DOI: 10.3367/UFNe.2016.10.038012
  6. V.V. Privezentsev, V.A. Skuratov, V.S. Kulikauskas, O.S. Zilova, A.A. Burmistrov, N.Yu. Tabachkova, K.B. Eidelman, K.D. Shcherbachev, Nucl. Instr. Meth. Phys. Res. B, 460, 56 (2019). DOI: 10.1016/j.nimb.2019.01.040
  7. A.A. Chernyshov, A.A. Veligzhanin, Y.V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A, 603 (1-2), 95 (2009). DOI: 10.1016/j.nima.2008.12.167
  8. N.N. Trofimova, A.A. Veligzhanin, V.Yu. Murzin, A.A. Chernyshov, E.V. Khramov, V.N. Zabluda, I.S. Edel'man, Yu.L. Slovokhotov, Ya.V. Zubavichus, Nanotechnol. Russia, 8 (5-6), 396 (2013). DOI: 10.1134/S1995078013030191
  9. B. Ravel, M. Newville, J. Synchrotron. Rad., 12 (4), 537 (2005). DOI: 10.1107/S0909049505012719
  10. M. Newville, J. Synchrotron. Rad. 8 (2), 322 (2001). DOI: 10.1107/SO909049500016964

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245