Cherepanov I. A.
1,2,3, Savinykh A.S.
1,2, Garkushin G. V.
1,2, Razorenov S. V.
1,21Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: i.cherepanov95@yandex.ru, savas@ficp.ac.ru, garkushin@ficp.ac.ru, razsv@ficp.ac.ru
The results of the measurements of spall strength of polycarbonate at a maximum compression stress of 0.6 GPa in the initial temperature range of 20-185oC are presented. It has been found a significant decrease in the spall strength when the polycarbonate reached the glass transition temperature. The strain rates in the plastic compression wave are determined depending on the maximum stress under single and stepwise shock compression. The dependences of the shock wave velocity Us - mass velocity up in the range of maximum shock compression stresses up to 0.8 GPa at different temperatures are constructed. Keywords: Polycarbonate, shock waves, deformation, temperature, spall strength, shock adiabate.
- M. Nasraoui, P. Forquin, L. Siad, A. Rusinek. Mater. Design, 37, 500 (2012). DOI:10.1016/j.matdes.2011.11.032
- T.J. Holmquist, J. Bradley, A. Dwivedi, D. Casem. Europ. Phys. J. Special Topics, 225, 343 (2016). DOI: 10.1140/epjst/e2016-02636-5
- H. Wenjun, G. Hui, C. Yongmei, X. Ruoze, J. Hua, H. Peng. Europ. Polymer J., 85, 313 (2016). DOI: 10.1016/j.eurpolymj.2016.10.036
- N.K. Bourne. J. Dynamic Behavior Mater., 2 (1), 33 (2016). DOI: 10.1007/s40870-016-0055-5
- M. Fernandez, M.E. Munoz, A. Santamari a. Macromolecular Chem. Phys., 209, 1730 (2008). DOI: 10.1002/macp.200700630
- S.J. Ye, H.W. Chai, X. Xianghui, Y. Cai, X.H. Yao, S.N. Luo. J. Appl. Phys., 126 (8), 085105 (2019). DOI:10.1063/1.5108965
- R.F. Trunin, L.F. Gudarenko, M.V. Zhernokletov, G.V. Simakov. Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances (RFNC, Sarov, 2001)
- S.P. Marsh. LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980)
- T. De Resseguier, M. Deleignies. Shock Waves, 7 (6), 319 (1997). DOI:10.1007/s001930050086
- E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 126, 085902 (2019). DOI: 10.1063/1.5116075
- M. Brown, P. Gallagher. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications (Elsevier, 2011)
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43 (11), 4669 (1972). DOI:10.1063/1.1660986
- I.I. Tugov, G.I. Kostrykina. Physics and Chemistry of Polymers (Chemistry, M., 1989)
- G.I. Kanel. Int. J. Fract., 163 (1-2), 173 (2010). DOI:10.1007/s10704-009-9438-0
- G.I. Kanel. PMTF, 42 (2), 194 (2001)
- W. Xinyu, L. Hongxia, G. Junfeng, L. Zheng, R. Shilun, S. Changyu, W. Minjie. Polymers, 9 (3), 85 (2017). DOI: 10.3390/polym9030085
- G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov. Udarno-volnoviye yavleniya v kondensirovannykh sredakh (Janus-K, M., 1996) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.