On an increase in the volume concentration of hydrogen in undoped LiNbO3 crystals of congruent composition
Yatsenko A. V.1, Yagupov S. V.1, Shul'gin V. F.1, Yatsenko A. A. 1
1Vernadskii Crimean Federal University, Simferopol, Russia
Email: yatsenkoav@cfuv.ru
The efficiency of the process of increasing the volume concentration of hydrogen in LiNbO3 crystals of congruent composition by heating in a humid atmosphere has been studied. It is shown that pretreatment of LiNbO3 crystals in adipic acid makes it possible to significantly increase the volume concentration of hydrogen in the sample during subsequent thermochemical treatment in wet air. Keywords: lithium niobate, hydrogen, electrical conductivity, IR spectroscopy.
- I.F. Kanaev, V.K. Malinovski\^i, N.V. Surovtsev. Phys. Solid State, 42 (11), 2142 (2000). DOI: 10.1134/1.1324054
- M. Wohlecke, L. Kovacs. Critical Reviews in Solid State and Material Sciences, 25 (1), 1 (2000). DOI: 10.1080/20014091104161
- K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Kratzig. Phys. Rev. B., 56, 1225 (1997). DOI: 10.1103/PhysRevB.56.1225
- Yu.S. Kuz'minov. Elektroopticheskii i nelineinoopticheskii kristall niobata litiya (Nauka, M., 1987) (in Russian)
- J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Diegues. Adv. Phys., 45, 349 (1996). DOI: 10.1080/00018739600101517
- T.R. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)
- S. Klauer, M. Wohlecke, S. Kapphan. Phys. Rev. B., 45, 2786 (1992). DOI: 10.1103/physrevb.45.2786
- J.M. Zavada, H.C. Casey, R.J. States, S.V. Novak, A. Loni. J. Appl. Phys., 77, 2697 (1995). DOI: 10.1063/1.358738
- A.V. Yatsenko, A.S. Pritulenko, S.V. Yagupov, D.Yu. Sugak, I.M. Sol'skii. Phys. Solid State, 60 (3), 527 (2018). DOI: 10.1134/S1063783418030344
- A.S. Pritulenko, A.V. Yatsenko, S.V. Yevdokimov. Cryst. Rep., 60 (2), 267 (2015). DOI: 10.1134/S1063774515020224
- T. Kohler, E. Mehner, J. Hanzig, G. Gartner, C. Funke, Y. Joseph, T. Leisegang, H. Stocker, D.C. Meyer. J. Mater. Chem. C, 9, 2350 (2021). DOI: 10.1039/d0tc05236a
- G. Dravecz, L. Kovacs, A. Peter, K. Polgar, P. Bourson. Phys. Stat. Sol. (c), 4 (3), 1313 (2007). DOI: 10.1002/pssc.200673733
- A.V. Yatsenko, S.V. Yevdokimov, A.A. Yatsenko, Ferroelectrics, 576, 157 (2021). DOI: 10.1080/00150193. 2021.1888274
- E.Y. Pun, K.K. Loi, C.F. Mak, P.S. Chung. J. Appl. Phys., 73, 3114 (1993). DOI: 10.1063/1.353001
- W.X. Hou, T.C. Chong. Ferroelectric Lett., 20, 119 (1995). DOI: 10.1080/07315179508204292
- W. Bollmann. K. Schlothauer, O.J. Zogal. Kristall und Technik, 11 (12), 1326 (1976). DOI: 10.1002/CRAT.19760111216
- R. Richter, T. Bremer, P. Hertel, E. Kratzig. Phys. Stat. Sol. (a), 114, 765 (1989). DOI: 10.1002/pssa.2211140241
- R. Muller, L. Arizmendi, M. Carrascosa, J.M. Cabrera. Appl. Phys. Lett., 60, 3212 (1992). DOI: 10.1063/1.106742
- G. Mandula, M.A. Ellaban, M. Fally. Ferroelectrics, 352, 118 (2007). DOI: 10.1080/00150190701358217
- E.M. de Miguel-Sanz, M. Carrascosa, L. Arizmendi. Phys. Rev. B, 65, 165101 (2002). DOI: 10.1103/PhysRevB. 65.165101
- M.J. de Rosendo, L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez. Solid St. Commun., 59, 499 (1986). DOI: 10.1016/0038-1098(86)90696-4
- H. Nagata, T. Sakamoto, H. Honda, J. Ichikawa, E.M. Haga, K. Shima, N. Haga. J. Mater. Res., 11 (8), 2085 (1996). DOI: 10.1557/JMR.1996.0262
- A.V. Yatsenko, A.S. Pritulenko, S.V. Yevdokimov, D.Yu. Sugak, I.M. Solskii. Solid St. Phenom., 200, 193 (2013). DOI: 10.4028/www.scientific.net/SSP.200.193
- A.V. Yatsenko, A.S. Pritulenko, S.V. Yevdokimov, D.Yu. Sugak, I.I. Syvorotka, Yu.D. Suhak, I.M. Solskii, M.M. Vakiv. Solid St. Phenom., 230, 233 (2015). DOI: 10.4028/www.scientific.net/SSP.230.233
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.