Brittle fracture of a conductor in a strong pulsed magnetic field
Russkikh P. A. 1, Boltachev G. Sh. 1, Paranin S.N. 1
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: russkikh_p@inbox.ru, grey@iep.uran.ru, paranine@iep.uran.ru

PDF
The main factors resulting in conductor failure under the action of a strong pulsed magnetic field are analyzed. The theoretical model describes the geometry of a cylindrical thick-walled solenoid and considers magnetic field diffusion, ohmic heating of the material and mechanical stresses arising in it. The magnetic field amplitude at which induced stresses in the material reach the von Mises yield criterion is used as the Bth threshold field separating the areas of safe (non-destructive) and dangerous fields. In the case of an initially uniform material, the maximum heating temperature corresponding to this limit, which predetermines the thermomechanical stress, has been derived analytically. In the general case, based on the analysis of the calculated threshold field, the influence of various parameters (magnetic pulse characteristics, elastic moduli of the material, etc.) on the conductor resistance in the pulsed magnetic field is studied and ways of increasing the threshold field are proposed, in particular, by using different spatial profiles of the initial resistivity. It is shown that in comparison with a uniform material, a modified layer with increased resistivity formed on the surface allows to significantly increase the amplitude of the magnetic pulse withstood by the material without fracture. Keywords: Magnetic field diffusion, plastic deformation, thermomechanical stress, yield strength, von Mises yield criterion.
  1. E.S. Ostropiko, S.G. Shops, S.I. Krivosheev. ZhTF, 92 (1), 174 (2022) (in Russian). DOI: 10.21883/JTF.2022.01.51868.247-21
  2. G.Sh. Boltachev, K.A. Nagayev, S.N. Paranin, A.V. Spirin, N.B. Volkov. Magnetic Pulsed Compaction of Nanosized Powders (Nova Science Publishers, Inc., N.Y.C., 2010)
  3. E.A. Olevsky, A.A. Bokov, G.Sh. Boltachev, N.B. Volkov, S.V. Zayats, A.M. Ilyina, A.A. Nozdrin, S.N. Paranin. Acta Mech., 224 (12), 3177 (2013). DOI: 10.1007/s00707-013-0939-6
  4. G.Sh. Boltachev, N.B. Volkov, S.N. Paranin, A.V. Spirin. Tech. Phys., 55 (6), 753 (2010). DOI: 10.1134/S1063784210060010
  5. E.L. Strizhakov, S.V. Neskromny, R.V. Merkulov. Svarka i diagnostika, 4, 43 (2012) (in Russian)
  6. V.I. Krutikov, S.N., Paranin, D.S. Koleukh, V.V. Ivanov, A.V. Spirin, J.-G. Lee, M.-K. Lee, C.-K. Rhee. Izvestiya Vuzov. Fizika, 57 (11/3), 264 (2014) (in Russian)
  7. A.V. Spirin, G.Sh. Boltachev, V.I. Krutikov, S.N. Paranin, P.A. Russkikh, D.S. Koleukh. AIP Conf. Proc., 2174, 020163 (2019). DOI: 10.1063/1.5134314
  8. S.I. Krivosheev, Yu.E. Adamian, D.I. Alekseev, S.G. Magazinov, L.V. Chernenkaya, V.V. Titkov. J. Phys. Conf., 1147, 012033 (2019). DOI: 10.1088/1742-6596/1147/1/012033
  9. F. Herlach. Strong and Ultrastrong Magnetic Fields and Their Applications (Springer-Verlag, Berlin, 1985)
  10. S. Manson. Temperaturnye napryazhenia i malotsiklovaya ustalost (Mashinostroenie, M., 1974)
  11. V.V. Titkov. ZhTF, 59 (9), 72 (1989) (in Russian)
  12. V.V. Titkov. ZhTF, 61 (4), 54 (1991) (in Russian)
  13. I.M. Karpova, V.V. Titkov. ZhTF, 64 (7), 137 (1994) (in Russian)
  14. I.M. Karpova, V.V. Titkov. ZhTF, 65 (6), 54 (1995) (in Russian)
  15. P.A. Russkikh, G.Sh. Boltachev, S.N. Paranin, A.V. Kebets. IEEE Trans. Plasma Sci., 49 (9), 2463 (2021). DOI: 10.1109/TPS.2021.3092788
  16. A.V. Spirin, P.A. Russkikh, V.I. Krutikov, S.N. Paranin, D.S. Koleukh. 20th Int. Symp. on High-Current Electronics (Tomsk, Russia, 2018), p. 148-153. DOI: 10.1109/ISHCE.2018.8521205
  17. I.M. Karpova, A.N. Semakhin, V.V. Titkov, G.A. Shneerson. Analysis of Methods of Lowering Heating of and Thermal Stresses in the Coils in Nigh Magnetic Fields. Megagauss Magnetic Fields and Pulsed Power Systems (Nova Science Publishers, N.Y.C., 1990)
  18. I.M. Karpova, V.V. Titkov. Elektrichestvo, 12, 55 (1999) (in Russian)
  19. G.A. Shneerson, A.A. Parfentiev, V.V. Titkov, S.I. Krivosheev, A.D. Lagutkina, A.S. Nemov, A.P. Nenashev, S.A. Shimansky. Tech. Phys. Lett., 47, 573 (2021). DOI: 10.1134/S1063785021060134
  20. A.V. Spirin, E.Y. Zaytsev, S.N. Paranin. IEEE Trans. Magn., 58 (6), 1 (2022). DOI: 10.1109/TMAG.2022.3165386
  21. G.A. Schneerson. Fields and transients in the equipment of super-strong currents (Energoatomizdat, M., 1992) (in Russian)
  22. G. Knopfel. Super-strong pulsed magnetic fields (Mir, M., 1972) (in Russian)
  23. O. Schnitzer. Phys. Plasmas, 21, 082306 (2014). DOI: 10.1063/1.4892398
  24. R. Holland. IEEE Trans. Antennas Propag., 43 (7), 653 (1995). DOI: 10.1109/8.391135
  25. J.R. Brauer, I.D. Mayergoyz. IEEE Trans. Magn., 40 (2), 537 (2004). DOI: 10.1109/TMAG.2004.824591
  26. B. Tellini, M. Bologna, D. Pelliccia. IEEE Trans. Magn., 43 (3), 1112 (2005). DOI: 10.1109/TMAG.2004.841700
  27. Yu.E. Adam'yan, E.A. Vyrva, S.I. Krivosheev, V.V. Titkov. Tech. Phys., 58 (10), 1397 (2013). https://doi.org/10.1134/S1063784213100022
  28. S.E. Rosenthal, M.P. Desjarlais, R.B. Spielman, W.A. Stygar, J.R. Asay, M.R. Douglas, C.A. Hall, M.H. Frese, R.L. Morse, D.B. Reisman. IEEE Trans. Plasma Sci., 28 (5), 1427 (2000). DOI: 10.1109/27.901209
  29. S.F. Garanin, G.G. Ivanova, D.V. Karmishin, V.N. Sofronov. J. Appl. Mech. Tech. Phys., 46 (2), 153 (2005). DOI: 10.1007/PL00021891
  30. S.I. Krivosheev, V.S. Pomazov, G.A. Shneerson. Tech. Phys. Lett., 37 (9), 877 (2011). DOI: 10.1134/S1063785011090227
  31. S.I. Krivosheev, S.G. Magazinov, D.I. Alekseev. J. Phys. Conf., 946, 012040 (2018). DOI: 10.1088/1742-6596/946/1/012040
  32. A.J. Mestel. Proc. Math. Phys. Eng. Sci., 405, 49 (1986). DOI: 10.1098/rspa.1986.0040
  33. S.I. Krivosheev, S.G. Magazinov, G.A. Shneerson. Tech. Phys. Lett., 45 (2), 100 (2019). DOI: 10.1134/S1063785019020093
  34. A.V. Spirin, G.Sh. Boltachev, S.N. Paranin, V.I. Krutikov, D.S. Koleukh, P.A. Russkikh. Proceedings of EAPPC \& BEAMS (Changsha, China, 2018), p. 172-176
  35. L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Pergamon Press, Oxford, 1993)
  36. L.I. Sedov. Mechanics of Continuous Media 1 and 2 (World Scientific, Singapore, 1997)
  37. A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky. Tables of physical quantities (Energoatomizdat, M., 1991) (in Russian)
  38. F. Heringhaus, H.-J. Schneider-Muntau, G. Gottstein. Mater. Sci. Eng. A, 347, 9 (2002). DOI: 10.1016/S0921-5093(02)00590-7
  39. Q. Yuanshen, R. Lapovok, Yu. Estrin. J. Mater. Sci., 51, 6860 (2016). DOI: 10.1007/s10853-016-9973-9
  40. P.A. Russkikh, G.Sh. Boltachev, S.N. Paranin. AIP Conf. Proc., 2113, 030028 (2020). DOI: 10.1063/5.0032221
  41. A.R. Bryant. The Intern. Conf. on Megagauss Magnetic Fields Generation by Explosives and Related Experiments Proc. (Euroatom, Brussel, 1966), p. 183-191
  42. G. Carslaw, D. Eger, Teploprovodnost tverdykh tel (Nauka, M., 1964) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru