The effect of chemical-mechanical processing of silicon wafers on their surface morphology and strength
V.A. Kozlov1,2, V.I. Nikolaev1, V.V. Shpeizman1, R.B. Timashov1, A.O. Pozdnyakov1, S.I. Stepanov1
1Ioffe Institute, St. Petersburg, Russia
2AO ”PK FID-Tekhnika“, St. Petersburg, Russia
Email: shpeizm.v@mail.ioffe.ru

PDF
The mechanical strength of various silicon wafers with a thickness of 100 μm has been studied, depending on the methods of their preparation and the modes of their subsequent grinding or polishing, including chemical-mechanical (HMP). The plates were loaded using the ring-to-ring method, the magnitude of stresses and deflection under the small ring was determined by the finite element method. For all the samples studied, the profiles and roughness parameters of the plates were obtained by stylus profilometry and atomic force microscopy (AFM) when scanning the surface along the baseline and over the area. A direct correlation was found between the strength of the plates and the characteristic parameters of their surface profile (the average values of the magnitude and period of fluctuations in the height of the irregularities). Keywords: silicon wafer, strength, chemical-mechanical polishing treatment, surface morfology.
  1. F. Kaule, B. Kohler, J. Hirsch, S. Schoenfelder, D. Lausch. Sol. Energy Mater. Sol. Cells, 185, 511 (2018). DOI: 10.1016/j.solmat.2018.05.057
  2. V.A. Popovich, A. Yunus, M. Janssen, I.M. Richardson, I.J. Bennett. Sol. Energy Mater. Sol. Cells, 95, 97 (2011). DOI: 10.1016/j.solmat.2010.04.038
  3. V.A. Popovich, A.C. Riemslag, M. Janssen, I.J. Bennett, I.M. Richardson. Int. J. Mater. Sci., 3, 9 (2013)
  4. H. Sekhar, T. Fukuda, K. Tanahashi, H. Takato, H. Ono, Y. Sampei, T. Kobayashi. Mater. Sci. Semicond. Process., 119, 105209 (2020) DOI: 10.1016/j.mssp.2020.105209
  5. J.-H. Woo, Y.-Ch. Kima, S.-H. Kima, J. Jang, H. N. Hanc, K.J. Choi, I. Kim, J.-Y. Kima. Scripta Mater., 140, 1 (2017). DOI: 10.1016/j.scriptamat.2017.06.047
  6. M. Boniecki, P. Kaminski, W. Weso owski, K. Krzyzak. Maerialitye-Elektrniczne (Electron. Mater.), 44, 8 (2016)
  7. D. Echizenya, H. Sakamoto, K. Sasaki. Proced. Eng., 10, 1443 (2011). DOI: 10.1016/j.proeng.2011.04.239
  8. A.M. Gabor, R. Janoch, A. Anselmo, J.L. Lincoln, H. Seigneur, Ch. Honeker. Proc. of the IEEE 43rd Photovoltaic Specialists Conf (PVSC) (Portland, OR, USA, 2016), v. 6.1, p. 3574. DOI: 10.1109/PVSC.2016.7750338
  9. S. Gouttebroze, H.I. Lange, X. Ma, R. Glockner, B. Emamifard, M. Syvertsen, M. Vardavoulias, A. Ulyashin. Phys. Status Solidi A, 210, 777 (2013). DOI: 10.1002/pssa.201300003
  10. G. Coletti, N. van der Borg, S. De Iuliis, C.J.J. Tool, L.J. Geerligs. Proc of the 21st European Photovoltaic Solar Energy Conference and Exhibition (Dresden, Germany, 2006), rx06032
  11. V.A. Popovich, W. Geerstma, M. Janssen, I.J. Bennett, I.M. Richardson. EPD Congress 2015. Ed. by J. Yurko, A. Allanore, L. Bartlett, J. Lee, L. Zhang, G. Tranell, Y. Meteleva-Fischer, S. Ikhmayies, A.S. Budiman, P. Tripathy, G. Fredrickson (Springer, 2016), 241-248
  12. E. Cereceda1, J. Barredo, J.R. Gutierrez, J.C. Jimeno. Proc. of the 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on Photovoltaic Energy Conversion (Valencia, Spain, 2010), 1665-68
  13. V.V. Shpeizman, V.I. Nikolaev, A.O. Pozdnyakov, A.V. Bobyl', R.B. Timashov, A.I. Averkin. Tech. Phys. 65 (1), 73 (2020). DOI: 10.1134/S1063784220010259
  14. S.E. Nikitin, V.V. Shpeizman, A.O. Pozdnyakov, S.I. Stepanov, R.B. Timashov, V.I. Nikolaev, E.I. Terukov, A.V. Bobyl. Mater. Sci. Semicond. Process., 15, 106386 (2022). DOI: org/10.1016/j.mssp.2021.106386
  15. G. Rozgonyi, K. Youssef, P. Kulshreshtha, M. Shi, E. Good. Solid State Phenomena, 178--179, 79 (2011). DOI: 10.4028/www.scientific.net/SS. P. 178-179.79
  16. A. Masolin, P. Bouchard, R. Martini, M. Bernacki. J. Mater. Sci., 48, 979 (2013). DOI: 10.1007/s10853-012-6713-7
  17. F.F. Wittman, V.P. Pukh. Zavodskaya laboratoriya, 29, 863 (1963) (in Russian)
  18. M. Oswald, T. Loewenstein, O. Anspach, J. Hirsch, D. Lausch, S. Schoenfelder. Proc of the European PV Solar Energy Conference and Exhibition (Amsterdam, Netherlands, 2014). DOI: 10.4229/EUPVSEC20142014-2AV.1.38
  19. M. Staudacher, T. Lube, J. Schlacher, P. Supancic. Open Ceramics, 6, 100101 (2021). DOI: 10.1016/j.oceram.2021.100101
  20. W. Weibull. J. Appl. Mech., 18, 293 (1951). DOI: 10.1115/1.4010337
  21. V.A. Stepanov, N.N. Peschanskaya, V.V. Speizman. Prochnost' i relaksacionnye yavleniya v tverdykh telakh (Nauka, L., 1984), 245 p. (in Russian)
  22. N.I. Kargin, A.S. Gusev, S.M. Ryndya, A.D. Bakun, A.E. Ieshkin, A.A. Akovantseva, P.I. Misurkin, S.G. Lakeev, I. Matushchenko, S.F. Timashev. Sci. Vis., 9, 28 (2017)
  23. M. Zaiser. Adv. Phys., 55, 185-245 (2006)
  24. J. Feder. Fractals (Plenum Press, NY., 1988)
  25. E. Bouchaud. J. Phys. Condens. Matter., 9, 4319 (1997). DOI: 10.1088/0953-8984/9/21/002
  26. V.A. Oborin, M.V. Bannikov, Y.V. Bayandin, M.A. Sokovikov, D.A. Bilalov, O.B. Naimark. PNRPU Mech. Bull., 2, 116 (2015). DOI: 10.15593/perm.mech/2015.2.07
  27. S.F. Timashev, Yu.S. Polyakov. Fluct. Noise Lett., 7, R15 (2007). DOI: 10.1142/S0219477507003829
  28. S.D. Andreev, L.S. Ivlev. Optika atmosfery i okeana, 10, 1450 (1997) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru