Measuring the mobility of charge carriers in samples with low conductivity by the field effect transistor method using output characteristics
Parfenov P. S.1, Korzhenevskii I. G.1, Babaev A. A.1, Litvin. A. P.1, Sokolova A. V.1, Fedorov A. V.1
1ITMO University, International research and educational center for physics of nanostructures, Saint-Petersburg, Russia

PDF
FET-based charge carrier mobility measurements in low-conductivity materials, as well as semiconductor materials with a high density of trapping states, such as nanocrystals and polycrystalline films, are highly distorted due to charge accumulation in the transistor structure. In this work, a comparative study of the measurement of the mobility of charge carrier in conductive polymers, nanocrystals and polycrystalline films, using the analysis of output and transfer characteristics, was carried out. It is shown that using output characteristics instead of transfer characteristics for calculating the charge carrier mobility helps to avoid a systematic error in the measurement. Keywords: field-effect transistor, FET, charge carrier mobility, output characteristics, transfer characteristics, charge accumulation, nanocrystals.
  1. V. Podzorov. MRS Bull., 38, 15 (2013). DOI: 10.1557/mrs.2012.306
  2. J. Zaumseil, H. Sirringhaus. Chem. Rev., 107, 1296 (2007). DOI: 10.1021/cr0501543
  3. P.S. Parfenov, N.V. Bukhryakov, D.A. Onishchuk, A.A. Babaev, A.V. Sokolova, A.P. Litvin. Semiconductors, 56 (2), 175 (2022). DOI: 10.21883/SC.2022.02.53049.9734
  4. M. Kaisti. Biosens. Bioelectron., 98, 437 (2017). DOI: 10.1016/j.bios.2017.07.010
  5. H.H. Choi, K. Cho, C.D. Frisbie, H. Sirringhaus, V. Podzorov. Nat. Mater., 17, 2 (2018). DOI: 10.1038/nmat5035
  6. J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik. ACS Nano, 2, 271 (2008). DOI: 10.1021/nn7003348
  7. O.V. Aleksandrov, S.A. Mokrushina. Semiconductors, 52 (6), 783 (2018). DOI: 10.1134/S1063782618060027
  8. Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law. Nano Lett., 10, 1960 (2010). DOI: 10.1021/nl101284k
  9. V. Podzorov, M.E. Gershenson, Ch. Kloc, R. Zeis, E. Bucher. Appl. Phys. Lett., 84, 3301 (2004). DOI: 10.1063/1.1723695
  10. H. Roger. ETH Zurich., 2013. DOI: 10.3929/ETHZ-A-010103856
  11. Z. Qin, H. Gao, J. Liu, K. Zhou, J. Li, Y. Dang, L. Huang, H. Deng, X. Zhang, H. Dong, W. Hu. Adv. Mater., 31, 1903175 (2019). DOI: 10.1002/adma.201903175
  12. M.I. Nugraha, R. Hausermann, S. Watanabe, H. Matsui, M. Sytnyk, W. Heiss, J. Takeya, M.A. Loi. ACS Appl. Mater. Interfaces, 9, 4719 (2017). DOI: 10.1021/acsami.6b14934
  13. M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, M.A. Loi. Energy Environ. Sci., 9, 2916 (2016). DOI: 10.1039/C6EE01577H
  14. B. Jeong, L. Veith, T.J.A.M. Smolders, M.J. Wolf, K. Asadi. Adv. Mater., 33, 2100486 (2021). DOI: 10.1002/adma.202100486
  15. E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6, 8913 (2012). DOI: 10.1021/nn3029106
  16. X. Zhang, Q. Zeng, Y. Xiong, T. Ji, C. Wang, X. Shen, M. Lu, H. Wang, S. Wen, Y. Zhang, X. Yang, X. Ge, W. Zhang, A.P. Litvin, A.V. Baranov, D. Yao, H. Zhang, B. Yang, A.L. Rogach, W. Zheng. Adv. Funct. Mater., 30, 1910530 (2020). DOI: 10.1002/adfm.201910530
  17. S.A. Rutledge, A.S. Helmy. J. Appl. Phys., 114, 133708 (2013). DOI: 10.1063/1.4824104
  18. S.H. Kim. Bull. Korean Chem. Soc., 38, 1460 (2017). DOI: 10.1002/bkcs.11327
  19. Y. Kim, M. Chang, S. Cho, M. Kim, H. Kim, E. Choi, H. Ko, J. Hwang, B. Park. J. Alloys Compd., 804, 213 (2019). DOI: 10.1016/j.jallcom.2019.06.352
  20. A.K. Diallo, M. Gaceur, S.B. Dkhil, Y. Didane, O. Margeat, J. Ackermann, C. Videlot-Ackermann. Colloids Surf. A Physicochem. Eng. Asp., 500, 214 (2016). DOI: 10.1016/j.colsurfa.2016.04.036
  21. Y. Kim, B. Park. J. Phys. Chem. C Nanomater. Interfaces, 123, 30689 (2019). DOI: 10.1021/acs.jpcc.9b08819
  22. F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof. Adv. Funct. Mater., 31, 2101029 (2021). DOI: 10.1002/adfm.202101029
  23. F.M. Li, G.-W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, W.I. Milne. IEEE Trans. Electron Devices, 55, 3001 (2008). DOI: 10.1109/TED.2008.2005180
  24. B. Ebenhoch, S.A.J. Thomson, K. Geneviv cius, G. Juv ska, I.D.W. Samuel. Org. Electron., 22, 62 (2015). DOI: 10.1016/J.ORGEL.2015.03.013

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru