Measuring the mobility of charge carriers in samples with low conductivity by the field effect transistor method using output characteristics
Parfenov P. S.1, Korzhenevskii I. G.1, Babaev A. A.1, Litvin. A. P.1, Sokolova A. V.1, Fedorov A. V.1
1ITMO University, International research and educational center for physics of nanostructures, Saint-Petersburg, Russia
FET-based charge carrier mobility measurements in low-conductivity materials, as well as semiconductor materials with a high density of trapping states, such as nanocrystals and polycrystalline films, are highly distorted due to charge accumulation in the transistor structure. In this work, a comparative study of the measurement of the mobility of charge carrier in conductive polymers, nanocrystals and polycrystalline films, using the analysis of output and transfer characteristics, was carried out. It is shown that using output characteristics instead of transfer characteristics for calculating the charge carrier mobility helps to avoid a systematic error in the measurement. Keywords: field-effect transistor, FET, charge carrier mobility, output characteristics, transfer characteristics, charge accumulation, nanocrystals.
- V. Podzorov. MRS Bull., 38, 15 (2013). DOI: 10.1557/mrs.2012.306
- J. Zaumseil, H. Sirringhaus. Chem. Rev., 107, 1296 (2007). DOI: 10.1021/cr0501543
- P.S. Parfenov, N.V. Bukhryakov, D.A. Onishchuk, A.A. Babaev, A.V. Sokolova, A.P. Litvin. Semiconductors, 56 (2), 175 (2022). DOI: 10.21883/SC.2022.02.53049.9734
- M. Kaisti. Biosens. Bioelectron., 98, 437 (2017). DOI: 10.1016/j.bios.2017.07.010
- H.H. Choi, K. Cho, C.D. Frisbie, H. Sirringhaus, V. Podzorov. Nat. Mater., 17, 2 (2018). DOI: 10.1038/nmat5035
- J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik. ACS Nano, 2, 271 (2008). DOI: 10.1021/nn7003348
- O.V. Aleksandrov, S.A. Mokrushina. Semiconductors, 52 (6), 783 (2018). DOI: 10.1134/S1063782618060027
- Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law. Nano Lett., 10, 1960 (2010). DOI: 10.1021/nl101284k
- V. Podzorov, M.E. Gershenson, Ch. Kloc, R. Zeis, E. Bucher. Appl. Phys. Lett., 84, 3301 (2004). DOI: 10.1063/1.1723695
- H. Roger. ETH Zurich., 2013. DOI: 10.3929/ETHZ-A-010103856
- Z. Qin, H. Gao, J. Liu, K. Zhou, J. Li, Y. Dang, L. Huang, H. Deng, X. Zhang, H. Dong, W. Hu. Adv. Mater., 31, 1903175 (2019). DOI: 10.1002/adma.201903175
- M.I. Nugraha, R. Hausermann, S. Watanabe, H. Matsui, M. Sytnyk, W. Heiss, J. Takeya, M.A. Loi. ACS Appl. Mater. Interfaces, 9, 4719 (2017). DOI: 10.1021/acsami.6b14934
- M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, M.A. Loi. Energy Environ. Sci., 9, 2916 (2016). DOI: 10.1039/C6EE01577H
- B. Jeong, L. Veith, T.J.A.M. Smolders, M.J. Wolf, K. Asadi. Adv. Mater., 33, 2100486 (2021). DOI: 10.1002/adma.202100486
- E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6, 8913 (2012). DOI: 10.1021/nn3029106
- X. Zhang, Q. Zeng, Y. Xiong, T. Ji, C. Wang, X. Shen, M. Lu, H. Wang, S. Wen, Y. Zhang, X. Yang, X. Ge, W. Zhang, A.P. Litvin, A.V. Baranov, D. Yao, H. Zhang, B. Yang, A.L. Rogach, W. Zheng. Adv. Funct. Mater., 30, 1910530 (2020). DOI: 10.1002/adfm.201910530
- S.A. Rutledge, A.S. Helmy. J. Appl. Phys., 114, 133708 (2013). DOI: 10.1063/1.4824104
- S.H. Kim. Bull. Korean Chem. Soc., 38, 1460 (2017). DOI: 10.1002/bkcs.11327
- Y. Kim, M. Chang, S. Cho, M. Kim, H. Kim, E. Choi, H. Ko, J. Hwang, B. Park. J. Alloys Compd., 804, 213 (2019). DOI: 10.1016/j.jallcom.2019.06.352
- A.K. Diallo, M. Gaceur, S.B. Dkhil, Y. Didane, O. Margeat, J. Ackermann, C. Videlot-Ackermann. Colloids Surf. A Physicochem. Eng. Asp., 500, 214 (2016). DOI: 10.1016/j.colsurfa.2016.04.036
- Y. Kim, B. Park. J. Phys. Chem. C Nanomater. Interfaces, 123, 30689 (2019). DOI: 10.1021/acs.jpcc.9b08819
- F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof. Adv. Funct. Mater., 31, 2101029 (2021). DOI: 10.1002/adfm.202101029
- F.M. Li, G.-W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, W.I. Milne. IEEE Trans. Electron Devices, 55, 3001 (2008). DOI: 10.1109/TED.2008.2005180
- B. Ebenhoch, S.A.J. Thomson, K. Geneviv cius, G. Juv ska, I.D.W. Samuel. Org. Electron., 22, 62 (2015). DOI: 10.1016/J.ORGEL.2015.03.013
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.