Influence of stretching and compression deformations on the electrical conductive properties of graphene-nanotube composites with an island-type topology
Slepchenkov M. M. 1, Barkov P. V. 1, Glukhova O.E. 1
1Saratov State University, Saratov, Russia
Email: slepchenkovm@mail.ru, barkovssu@mail.ru, glukhovaoe@info.sgu.ru

PDF
Within the framework of the self-consistent-charge density functional tight-binding method, we study the features of the atomic structure and electrical conductive properties of a hybrid graphene-nanotube film with an island topology under uniaxial stretching and compression. The hybrid film is a composite structure formed by AB-stacked bilayer graphene and horizontally oriented chiral single-walled carbon nanotubes of 1.2 nm in diameter. The regularities of the deformation behavior of the investigated hybrid structure are revealed and the limits of its strength are established. It is shown how the electrical resistance and the current-voltage characteristic of the film change under stretching/compression deformations. Keywords: island-type graphene-nanotube films, uniaxial stretching/compression, resistance, current-voltage characteristic.
  1. S. Rathinavel, K. Priyadharshini, D. Panda. Mater. Sci. Eng. B, 268, 115095 (2021). DOI: 10.1016/j.mseb.2021.115095
  2. F. Zhang, K. Yang, G. Liu, Y. Chen, M. Wang, S. Li, R. Li. Compos. Part A Appl. Sci. Manuf., 160, 107051 (2022). DOI: 10.1016/j.compositesa.2022.107051
  3. B. Cai, H. Yin, T. Huo, J. Ma, Z. Di, M. Li, N. Hu, Z. Yang, Y. Zhang, Y. Su. J. Mater. Chem. C, 8 (10), 3386 (2020). DOI: 10.1039/C9TC06586E
  4. Y. Han, Y. Jiang, C. Gao, ACS Appl. Mater. Interfaces, 7 (15), 8147 (2015). DOI: 10.1021/acsami.5b00986
  5. Y. Li, Q. Ai, L. Mao, J. Guo, T. Gong, Y. Lin, G. Wu, W. Huang, X. Zhang. Sci. Rep., 11, 21006 (2021). DOI: 10.1038/s41598-021-00307-5
  6. W. Du, Z. Ahmed, Q. Wang, C. Yu, Z. Feng, G. Li, M. Zhang, C. Zhou, R. Senegor, C.Y. Yang. 2D Mater., 6 (4), 042005 (2019). DOI: 10.1088/2053-1583/ab41d3
  7. S. Lepak-Kuc, K.Z. Milowska, S. Boncel, M. Szybowicz, A. Dychalska, I. Jozwik, K.K. Koziol, M. Jakubowska, A. Lekawa-Raus. ACS Appl. Mater. Interfaces, 11 (36), 33207 (2019). DOI: 10.1021/acsami.9b08198
  8. H. Kim, J. Kim, H.S. Jeong, H. Kim, H. Lee, J.M. Ha, S.M. Choi, T.H. Kim, Y.C. Nah, T.J. Shin, J. Bang, S.K. Satijag, J. Koo. Chem. Commun., 54 (41), 5229 (2018). DOI: 10.1039/C8CC02148A
  9. K. Yousefi, J. Environ. Treat. Tech., 9 (1), 224 (2021). DOI: 10.47277/JETT/9(1)232
  10. R.T. Lv, E. Cruz-Silva, M. Terrones. ACS Nano, 8 (5), 4061 (2014). DOI: 10.1021/nn502426c
  11. J. Zhou, Y. Zheng, D. Chen. Nanomaterials, 12 (4), 620 (2022). DOI: 10.3390/nano12040620
  12. L. Cai, X. Xue, M. Liu, H. Li, X. Zhou, G. Yu. APL Mater., 9 (4), 041110 (2021). DOI: 10.1063/5.0045100
  13. B. Abreu, M. Rocha, M. Nunes, C. Freire, E.F. Marques. J. Mater. Sci., 56, 19512 (2021). DOI: 10.1007/s10853-021-06463-3
  14. T. Xu, D. Yang, Z. Fan, X. Li, Y. Liu, C. Guo, M. Zhang, Z.-Z. Yu. Carbon, 152 (134) (2019). DOI: 10.1016/j.carbon.2019.06.005
  15. A. Abdollahi, A. Abnavi, S. Ghasemi, S. Mohajerzadeh, Z. Sanaee. Electrochim. Acta, 320, 134598 (2019). DOI: 10.1016/j.electacta.2019.134598
  16. Y. Li, Z. Li, L. Lei, T. Lan, Y. Li, P. Li, X. Lin, R. Liu, Z. Huang, X. Fen, Y. Ma. Flat. Chem., 15, 100091 (2019). DOI: 10.1016/j.flatc.2019.100091
  17. Y. Zhou, W. Qian, W. Huang, B. Liu, H. Lin, C. Dong. Nanomaterials, 9 (10), 1450 (2019). DOI: 10.3390/nano9101450
  18. B.Yu. Valeev, A.N. Toksumakov, D.G. Kvashnin, L.A. Chernozatonskii. JETP Lett., 115 (2), 93 (2022). DOI: 10.1134/S0021364022020114
  19. O.E. Glukhova, M.M. Slepchenkov, V.V. Mitrofanov, P.V. Barkov, Semiconductors, 53 (12), 1677 (2019). DOI: 10.1134/S1063782619160097
  20. J. Srivastava, A. Gaur. J. Chem. Phys., 155 (24), 244104 (2021). DOI: 10.1063/5.0077099
  21. A.B. Felix, M. Pacheco, P. Orellana, A. Latge. Nanomaterials, 12 (19), 3475 (2022). DOI: 10.3390/nano12193475
  22. J. Srivastava, A. Gaur. Nanoscale Adv., 3 (7), 2030 (2021). DOI: 10.1039/D0NA00881H
  23. E.F. Sheka, L.A. Chernozatonskii. J. Comput. Theor. Nanosci., 7 (9), 1814 (2010). DOI: 10.1166/jctn.2010.1546
  24. S. Zhang, L. Tong, J. Zhang. Natl. Sci. Rev., 5 (3), 310 (2018). DOI: 10.1093/nsr/nwx080
  25. E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen, C. Gao. Carbon, 133, 316 (2018). DOI: 10.1016/j.carbon.2018.03.023
  26. J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin, Z. Zhang. Nanoscale, 7 (20), 9252 (2015). DOI: 10.1039/C5NR00841G
  27. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitricv a, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubav r, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. v Rezav c, C.G. S anchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V.W.Z. Yu, T. Frauenheim. J. Chem. Phys., 152 (12), 124101 (2020). DOI: 10.1063/1.5143190
  28. R.S. Mulliken. J. Chem. Phys., 23, 1833 (1955). DOI: 10.1063/1.1740588
  29. S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press, NY., 2005), p. 285-308
  30. J. Liu, Q. Liang, R. Zhao, S. Lei, W. Hu. Mater. Chem. Front., 4 (2), 354 (2020). DOI: 10.1039/C9QM00517J
  31. O. Braun, J. Overbeck, M.E. Abbassi, S. Kaser, R. Furrer, A. Olziersky, A. Flasby, G.B. Barin, R. Darawish, K. Mullen, P. Ruffieux, R. Fasel, I. Shorubalko, M.L. Perrin, M. Calame. Carbon, 184, 331 (2021). DOI: 10.1016/j.carbon.2021.08.001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru