Spectrum multiplexing of multiwavelength picosecond oscillation of synchronously pumped Raman laser based on a Sr(MoO_4)0.8(WO_4)0.2 crystal
Tereshchenko D. P. 1, Smetanin S. N. 1, Papashvili A. G. 1, Gubina K. A.2, Kochukov Y. A.1,2, Solokhin S. A. 3, Ershkov M. N. 3, Shashkov E. V. 1, Shukshin V. E. 1, Ivleva L. I. 1, Dunaeva E. E. 1, Voronina I. S. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Kovrov State Technological Academy named after V.A. Degtyarev, Kovrov, Russia
Email: ssmetanin@bk.ru, solokhins@gmail.com

PDF
For the first time to our knowledge, a single-phase solid solution Sr(MoO_4)0.8(WO_4)0.2 was used as an active medium of a Raman laser. Using the high-intensity synchronous picosecond pumping satisfying the condition of phase capture of the parametric Raman interaction on the second vibrational mode made it possible to oscillate six components of Raman radiation with a combined frequency shift on the first (888 cm-1) and second (327 cm-1) vibrational modes in the wavelength range of 1194-1396 nm. Oscillation efficiency of the multiwavelength Raman laser radiation was as high as 10%. By detuning the Raman laser cavity length, the pulse shortening down to 6 ps for the Raman laser radiation components with the combined frequency shift was obtained, which is an order of magnitude shorter than the pumping pulse duration (64 ps). Keywords: stimulated Raman scattering, single-phase solid solution, vibrational mode, synchronous pumping.
  1. Ch. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, E. Beaurepaire. Sci. Rep., 7, 3792 (2017). DOI: 10.1038/s41598-017-03359-8
  2. E.P. Perillo, J.W. Jarrett, Ye.-L. Liu, A. Hassan, D.C. Fernee, J.R. Goldak, A. Bonteanu, D.J. Spence, H.-Ch. Yeh, A.K. Dunn. Light Sci. Appl., 6, e17095 (2017). DOI: 10.1038/lsa.2017.95
  3. M. Frank, S.N. Smetanin, M. Jelinek, D. Vyhlidal, L.I. Ivleva, P.G. Zverev, V. Kubecek. Opt. Lett., 43 (11), 2527 (2018). DOI: 10.1364/OL.43.002527
  4. M. Frank, S.N. Smetanin, M. Jeli nek, D. Vyhli dal, V.E. Shukshin, P.G. Zverev, V. Kubev cek. Laser Phys. Lett., 16 (8), 085401 (2019). DOI: 10.1088/1612-202X/ab2b92
  5. M. Frank, S.N. Smetanin, M. Jelinek, D. Vyhlidal, M.B. Kosmyna, A.N. Shekhovstov, K.A. Gubina, V.E. Shukshin, P.G. Zverev, V. Kubecek. Crystals, 12 (2), 148 (2022). DOI: 10.3390/cryst12020148
  6. M. Frank, S.N. Smetanin, M. Jeli nek, D. Vyhli dal, V.E. Shukshin, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina, P.G. Zverev, V. Kubev cek. Crystals, 9 (3), 167 (2019). DOI: 10.3390/cryst9030167
  7. Y. Sun, Zh. Zhu, J. Li, Sh. Gao, H. Xia, Zh. You, Y. Wang, Ch. Tu. Opt. Mater., 49, 85 (2015). DOI: 10.1016/j.optmat.2015.08.023
  8. T.T. Basiev, P.G. Zverev, A.Y. Karasik, V.V. Osiko, A.A. Sobol, D.S. Chunaev. J. Exp. Theor. Phys., 99, 934 (2004). DOI: 10.1134/1.1842874
  9. P.G. Zverev, T.T. Basiev, A.A. Sobol, I.V. Ermakov, W. Gellerman. In Advanced Solid-State Lasers, ed. by C. Marshall. Vol. 50 of OSA Trends in Optics and Photonics (Optica Publishing Group, 2001), paper ME1. DOI: 10.1364/ASSL.2001.ME1
  10. G.G. Grigoryan, S.B. Sogomonyan. Sov. J. Quantum Electron., 19 (11), 1402 (1989). DOI: 10.1070/QE1989v019n11ABEH009263
  11. M. Frank, S.N. Smetanin, M. Jeli nek, D. Vyhli dal, V.E. Shukshin, L.I. Ivleva, P.G. Zverev, V. Kubev cek. Opt. Laser Technol., 119, 105660 (2019). DOI: 10.1016/j.optlastec.2019.105660
  12. Handbook of Optics. Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (The McGraw-Hill Companies, Inc., NY., USA, 2010), 1152 p
  13. V.S. Butylkin, G.V. Venkin, L.L. Kulyuk, D.I. Maleev, Yu.G. Khronopulo, M.F. Shalyaev. Sov. J. Quantum Electron., 7 (7), 867 (1977). DOI: 10.1070/QE1977v007n07ABEH012668
  14. L.L. Losev, A.P. Lutsenko. Sov. J. Quantum Electron., 24 (10), 900 (1994). DOI: 10.1070/QE1994v024n10ABEH000206
  15. D.P. Tereshchenko, E.A. Peganov, S.N. Smetanin, A.G. Papashvili, E.V. Shashkov, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina, M. Frank. Crystals, 12, 495 (2022). DOI: 10.3390/cryst12040495
  16. Rezonator. [Electronic source] URL: http://rezonator. orion-project.org (date of access 02.02.2023)
  17. N.S. Vorobiev, P.B. Gornostaev, V.I. Lozovoi, A.V. Smirnov, E.V. Shashkov, M.Y. Schelev. Instrum. Exp. Tech., 59 (4), 551 (2016). DOI: 10.1134/S0020441216030246
  18. V.A. Nekhaenko, S.M. Pershin, A.A. Podshivalov. Sov. J. Quantum Electron., 16 (3), 299 (1986). DOI: 10.1070/QE1986v016n03ABEH005825

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru