Control of Chaotic Dark Dissipative Envelope Solitons in an Active Ring Resonator Based on a Magnonic Crystal with a Dynamic Defect
Bir A.S.
1, Romanenko D. V.
1, Skorokhodov V. N.
1, Nikitov S. A.
1,2, Grishin S. V.
11Saratov State University, Saratov, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: bir.evstegneeva.1997@gmail.com, dmitrii.romanenk@mail.ru, nikitov@cplire.ru, sergrsh@yandex.ru
Dynamic control of chaotic dark dissipative envelope solitons in a microwave active ring resona tor containing two nonlinear elements: a one-dimensional magnonic crystal (MC) with a dynamic linear defect and a transistor amplifier is performed. Dissipative envelope solitons are formed on a long-wavelength surface magnetostatic wave propagating in the MC and parametrically decaying into short-wavelength spin waves. A constant electric current flowing through a copper conductor creates a dynamic linear defect along the longitudinal axis of the MC and controls the duty factor of the generated parametric pulses only at the MC forbidden frequency. Keywords: dissipative solitons, magnonic crystals, spin waves.
- P. Pirro, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Rev. Mater., 6, 1114 (2021). DOI: 10.1038/s41578-021-00332-w
- S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M.V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Yu. Sharaevskaya, Yu.P. Sharaevsky, A.I. Kirilyuk, Phys. Usp., 63 (10), 945 (2020). DOI: 10.3367/UFNe.2019.07.038609
- Three-dimensional magnonics. Layered, micro- and nanostructures, ed. by G. Gubbiotti (Jenny Stanford Publ., N.Y., 2019). DOI: 10.1201/9780429299155
- A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys., 11 (6), 453 (2015). DOI: 10.1038/nphys3347
- M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, P. Wyder, Phys. Rev. Lett., 80 (19), 4281 (1998). DOI: 10.1103/PhysRevLett.80.4281
- Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Nature, 464 (11), 262 (2010). DOI: 10.1038/nature08876
- S.O. Demokritov, A.A. Serga, A. Andre, V.E. Demidov, M.P. Kostylev, B.A. Hillebrands, N. Slavin, Phys. Rev. Lett., 93 (4), 047201 (2004). DOI: 10.1103/PhysRevLett.93.047201
- K. Vogt, F.Y. Fradin, J.E. Pearson, T. Sebastian, S.D. Bader, B. Hillebrands, A. Hoffmann, H. Schultheiss, Nat. Commun., 5, 3727 (2014). DOI: 10.1038/ncomms4727
- A.V. Chumak, T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, J. Phys. D: Appl. Phys., 42 (20), 205005 (2009). DOI: 10.1088/0022-3727/42/20/205005
- A.A. Nikitin, A.B. Ustinov, A.A. Semenov, A.V. Chumak, A.A. Serga, V.I. Vasyuchka, E. Lahderanta, B.A. Kalinikos, B. Hillebrands, Appl. Phys. Lett., 106 (10), 102405 (2015). DOI: 10.1063/1.4914506
- S.V. Grishin, Yu.P. Sharaevskii, S.A. Nikitov, E.N. Beginin, S.E. Sheshukova, IEEE Trans. Magn., 47 (10), 3716 (2011). DOI: 10.1109/TMAG.2011.2158293
- S.V. Grishin, O.I. Moskalenko, A.N. Pavlov, D.V. Romanenko, A.V. Sadovnikov, Yu.P. Sharaevskii, I.V. Sysoev, T.M. Medvedeva, E.P. Seleznev, S.A. Nikitov, Phys. Rev. Appl., 16 (5), 054029 (2021). DOI: 10.1103/PhysRevApplied.16.054029
- A.S. Bir, S.V. Grishin, O.I. Moskalenko, A.N. Pavlov, M.O. Zhuravlev, D. Osuna Ruiz, Phys. Rev. Lett., 125 (8), 083903 (2020). DOI: 10.1103/PhysRevLett.125.083903
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.