Effect of Growth Temperature on the Physicochemical Properties of Low-Temperature GaAs Layers Fabricated by Pulsed Laser Deposition
Kriukov R.N.
1, Danilov Yu.A.
1, Lesnikov V.P.
1, Vikhrova O.V.
1, Zubkov S.Yu.
11Lobachevsky State University, Nizhny Novgorod, Russia
Email: kriukov.ruslan@yandex.ru, vikhrova@nifti.unn.ru
Low-temperature device-quality GaAs layers with high resistivity were obtained by pulsed laser deposition. The properties of GaAs layers are sensitive to the process temperature. At a growth temperature of less than 300oC, the layers have low electron mobility and a shift of the GaAs stoichiometry towards the region of arsenic enrichment at a level of 1-2 at.%. At a growth temperature of more than 300oC, the layers show an improved crystalline quality. The dependence of the relative intensity of the As 3d photoelectron line on the growth temperature confirms this trend with a change in the growth temperature. Keywords: pulsed laser deposition, Hall effect, X-ray photoelectron spectroscopy.
- Y. Horikoshi, M. Kawashima, H. Yamaguchi, Jpn. J. Appl. Phys., 25 (10), L868 (1986). DOI: 10.1143/JJAP.25.L868
- N.A. Bert, A.I. Veinger, M.D. Vilisova, S.I. Goloshchapov, I.V. Ivonin, S.V. Kozyrev, A.E. Kunitsyn, L.G. Lavrent'eva, D.I. Lubyshev, V.V. Preobrazhenskii, B.R. Semyagin, V.V. Tret'yakov, V.V. Chaldyshev, M.P. Yakubenya, Fiz. Tverd. Tela, 35 (10), 2609 (1993) (in Russian)
- A.A. Pastor, P.Yu. Serdobintsev, V.V. Chaldyshev, Semiconductors, 46 (5), 619 (2012). DOI: 10.1134/S106378261205017X
- A.A. Gorbatsevich, V.I. Egorkin, I.P. Kazakov, O.A. Klimenko, A.Yu. Klokov, Yu.A. Mityagin, V.N. Murzin, S.A. Savinov, V.A. Tsvetkov, Bull. Lebedev Phys. Inst., 42 (5), 121 (2015). DOI: 10.3103/S1068335615050012
- C. Tannoury, M. Billet, C. Coinon, J.-F. Lampin, E. Peytavit, Electron. Lett., 56 (17), 897 (2020). DOI: 10.1109/IRMMW-THz46771.2020.9370757
- D.S. Abramkin, M.O. Petrushkov, E.A. Emel'yanov, M.A. Putyato, B.R. Semyagin, A.V. Vasev, M.Yu. Esin, I.D. Loshkarev, A.K. Gutakovskii, V.V. Preobrazhenskii, T.S. Shamirzaev, Optoelectron. Instrum. Proc., 54 (2), 181 (2018). DOI: 10.3103/S8756699018020103.
- V.N. Nevedomskii, N.A. Bert, V.V. Chaldyshev, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin, Semiconductors, 43 (12), 1617 (2009). DOI: 10.1134/S1063782609120082
- H. Sakaguchi, T. Mishima, T. Meguro, Y. Fujiwara, J. Phys.: Conf. Ser., 165, 012024 (2009). DOI: 10.1088/1742-6596/165/1/012024
- I. Demir, A.E. Kasapovglu, H.F. Budak, E. Gur, S. Elagoz, Eur. Phys. J. Appl. Phys., 90 (2), 20301 (2020). DOI: 10.1051/epjap/2020190216
- A.V. Kudrin, V.P. Lesnikov, Yu.A. Danilov, M.V. Dorokhin, O.V. Vikhrova, P.B. Demina, D.A. Pavlov, Yu.V. Usov, V.E. Milin, Yu.M. Kuznetsov, R.N. Kriukov, A.A. Konakov, N.Yu. Tabachkova, Semicond. Sci. Technol., 35 (12), 125032 (2020). DOI: 10.1088/1361-6641/abbd5c
- M.P. Seah, W.A. Dench, Surf. Interface Anal., 1 (1), 2 (1979). DOI: 10.1002/sia.740010102
- A.V. Boryakov, S.I. Surodin, R.N. Kryukov, D.E. Nikolichev, S.Yu. Zubkov, J. Electron Spectrosc. Relat. Phenom., 229, 132 (2018). DOI: 10.1016/j.elspec.2017.11.004
- E.V. Kuchis, Gal'vanomagnitnye effekty i metody ikh issledovaniya (Radio i Svyaz', M., 1990), pp. 52--55 (in Russian)
- M.V. Lebedev, E. Mankel, T. Mayer, W. Jaegermann, J. Phys. Chem. C, 114 (49), 21385 (2010). DOI: 10.1021/jp104321e
- S. Hofmann, Auger- and X-ray photoelectron spectroscopy in materials science (Springer, Berlin, 2013), pp. 30--62. DOI: 10.1007/978-3-642-27381-0
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.