Peculiarities of the formation of a filamentary structure of a microwave discharge in an argon flow
Sintsov S.V. 1, Vodopyanov A.V.1, Stepanov A.N.1, Mansfeld D.A.1, Chekmarev N.V.1, Preobrazhensky E.I.1, Murzanev A.A.1, Romashkin A.V.1
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

PDF
This paper presents the results of an experimental study of the spatial structure of a microwave discharge maintained in an argon flow by gyrotron radiation in a continuous mode with a frequency of 24 GHz at atmospheric pressure. In the structure of the plasma plume, stationary filamentary channels are observed, elongated along the direction of the argon flow, regardless of the orientation of the external electric field of the wave, surrounded by a diffusion halo. Measurements of the electron density, vibrational and rotational temperatures of gas molecules in plasma filaments have been carried out. The role of gas-dynamic mechanisms responsible for the formation of the inhomogeneous static structure of the plasma torch and the maintenance of a substantially nonequilibrium distribution of temperature characteristics in the discharge is discussed. Keywords: high-pressure microwave discharge, plasma torch, argon, filamentous plasma channels, filaments.
  1. Yu.A. Lebedev. Polymers, 13 (11), 1678 (2021). DOI: 10.3390/polym13111678
  2. N.S. Akhmadullina, N.N. Skvortsova, E.A. Obraztsova, V.D. Stepakhin, E.M. Konchekov, A.A. Letunov, A.A. Konovalov, Yu.F. Kargin, O.N. Shishilov. Chem. Phys., 516, 63 (2019). DOI: 10.1016/j.chemphys.2018.08.023
  3. Y. Hong, J. Niu, J. Pan, Z. Bi, W. Ni, D. Liu, J. Li, Y. Wu. Vacuum, 130, 130 (2016). DOI: 10.1016/j.vacuum.2016.05.012
  4. K.V. Artem'ev, G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, S.I. Gritsinin, A.M. Davydov, L.V. Kolik, E.M. Konchekov, I.A. Kossyi, Yu.A. Lebedev, I.V. Moryakov, A.E. Petrov, K.A. Sarksyan, V.D. Stepakhin, N.K. Kharchev, V.A. Shakhatov. Plasma Phys. Reports, 46 (3), 311 (2020). DOI: 10.1134/S1063780X20030010
  5. L.F. Spencer, A.D. Gallimore. Plasma Sources Sci. Technol., 22 (1), 015019 (2012). DOI: 10.1088/0963-0252/22/1/015019
  6. K.V. Artem'ev, G.M. Batanov, N.K. Berezhetskaya, A.M. Davydov, I.A. Kossyi, V.I. Nefedov, K.A.Sarksyan, N.K. Kharchev. J. Physics: Conf. Series, 907, 012022 (2017). DOI: 10.1088/1742-6596/907/1/012022
  7. P.G. Sennikov, R.A. Kornev, A.I. Shishkin. Plasma Chem. Plasma Proces., 37 (4), 997 (2017). DOI: 10.1007/s11090-017-9821-y
  8. A.V. Vodopyanov, S.V. Golubev, D.A. Mansfeld, P.G. Sennikov, Yu.N. Drozdov. Rev. Sci. Instrum., 82 (6), 063503 (2011). DOI: 10.1063/1.3599618
  9. A.L. Vicharev, V.B. Gildenburg, S.V. Golubev, B.G. Eremin, O.A. Ivanov, A.G. Litvak, A.N. Stepanov, A.D. Yunakovskii. Sov. Phys. JETP, 67 (4), 724 (1988)
  10. D. Mansfeld, S. Sintsov, N. Chekmarev, A. Vodopyanov. J. CO2 Utilization, 40, 101197 (2020). DOI: 10.1016/j.jcou.2020.101197
  11. S.V. Sintsov, E.I. Preobrazhensky, R.A. Kornev, A.V. Vodopyanov, D.A. Mansfeld. Instrum. Experiment. Techniq., 65 (3), 419 (2022). DOI: 10.1134/S0020441222030058
  12. S. Sintsov, D. Mansfeld, E. Preobrazhensky, R. Kornev, N. Chekamrev, M. Viktorov, A. Ermakov, A. Vodopyanov. Plasma Chem. Plasma Proces., 42 (6), 1237 (2022). DOI: 10.1007/s11090-022-10280-0
  13. R.A. Kornev, P.G. Sennikov, L.V. Shabarova, A.I. Shishkin, T.A. Drozdova, S.V. Sintsov. High Energy Chem., 53 (3), 246 (2019). DOI: 10.1134/S001814391903010X
  14. R.A. Kornev, P.G. Sennikov, S.V. Sintsov, A.V. Vodopyanov. Plasma Chem. Plasma Proces., 37 (6), 1655 (2017). DOI: 10.1007/s11090-017-9846-2
  15. V.B. Gildenburg, A.V. Kim. Phys. Plasmas, 6 (4), 496 (1980)
  16. Y.Y. Brodskii, I.P. Venediktov, S.V. Golubev, V.G. Zorin, I.A. Kossyi. Tech. Phys. Lett., 10 (2), 77 (1984)
  17. S.I. Gritsinin, I.A. Kossyi, V.P. Silakov, N.M. Tarasova. J. Phys. D: Appl. Phys., 29 (4), 1032 (1996). DOI: 10.1088/0022-3727/29/4/013
  18. V. Avetisov, S. Gritsinin, A. Kim, I. Kossy, A. Kostinski, M. Misakyan, A. Nadezhdinski, N. Tarasova, A. Khusnutdinov. Sov. J. Experiment. Theor. Phys. Lett., 51, 348 (1990)
  19. K.V. Aleksandrov, V.L. Bychkov, I.I. Esakov, L.P. Grachev, K.V. Khodataev, A.A. Ravaev, I.B. Matveev. IEEE Transactions on Plasma Science, 37 (12), 2293 (2009). DOI: 10.1109/TPS.2009.2026175
  20. K. Khodataev. 46th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, 2008), DOI: 10.2514/6.2008-1405
  21. A.A. Skovoroda, A.V. Zvonkov. J. Experiment. Theor. Phys., 92 (1), 78 (2001). DOI: 10.1134/1.1348463
  22. Y.C. Hong, H.S. Uhm, S.C. Cho. J. Korean Phys. Society, 53 (6), 3220 (2008). DOI: 10.3938/jkps.53.3220
  23. G.M. Batanov, S.I. Gritsinin, I.A. Kossyi. J. Phys. D: Appl. Phys., 35 (20), 2687 (2002). DOI: 10.1088/0022-3727/35/20/332
  24. S.I. Gritsinin, I.A. Kossyi, V.P. Silakov, N.M. Tarasova. J. Phys. D: Appl. Phys., 29 (4), 1032 (1996). DOI: 10.1088/0022-3727/29/4/013
  25. B. Chaudhury, J.-P. Boeuf, G.Q. Zhu. Phys. Plasmas, 17|,(12), 123505 (2010). DOI: 10.1063/1.3517177
  26. S. Sintsov, A. Vodopyanov, D. Mansfeld. AIP Advances, 9 (10), 105009 (2019). DOI: 10.1063/1.5115326
  27. S. Sintsov, K. Tabata, D. Mansfeld, A. Vodopyanov, K. Komurasaki. J. Phys. D: Appl. Phys., 53 (30), 305203 (2020). DOI: 1361-6463/ab8999
  28. Yu.P. Rayzer, Fizika gazovogo razryada (Nauka, M., 1992) (in Russian)
  29. T. Barmashova, A.V. Sidorov, A.V. Vodopyanov, A. Luchinin, A. Murzanev, S. Razin, A. Stepanov, A. Veselov. IEEE Transactions on Terahertz Science and Technology, 1--1 (2022). DOI: 10.1109/TTHZ.2022.3164546
  30. T. Barmashova, A. Luchinin, A. Murzanev, A. Sidorov, A. Stepanov, A. Veselov, A. Vodopyanov. J. Phys.: Conf. Series, 1697 (1), 012220 (2020). DOI: 10.1088/1742-6596/1697/1/012220
  31. S.V. Sintsov, A.V. Vodopyanov, M.E. Viktorov, M.V. Morozkin, M.Yu. Glyavin. J. Infrared, Millimeter, and Terahertz Waves, 41 (6), 711 (2020). DOI: 10.1007/s10762-020-00694-2
  32. A.V. Sidorov, M.Y. Glyavin, S.V. Golubev, S.V. Razin, S.V. Sintsov, A.P. Veselov, A.V. Vodopyanov. J. Phys.: Conf. Series, 1400 (7), 077032 (2019). DOI: 10.1088/1742-6596/1400/7/077032
  33. J.S. Hummelt, M.A. Shapiro, R.J. Temkin. Phys. Plasmas, 19 (12), 123509 (2012). DOI: 10.1063/1.4773037
  34. Y. Oda, K. Komurasaki, K. Takahashi, A. Kasugai, K. Sakamoto. J. Appl. Phys., 100 (11), 113307 (2006). DOI: 10.1063/1.2399899
  35. X.-M. Zhu, Y.-K. Pu. J. Phys. D: Appl. Phys., 43 (40), 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001
  36. K.P. Savkin, E.M. Oks, D.A. Sorokin, A.Y. Yushkov, G.Y. Yushkov, S.V. Sintsov, A.V. Vodopyanov. Plasma Sourc. Sci. Technol., 31 (1), 015009 (2022). DOI: 10.1088/1361-6595/ac309a
  37. M. Morhavc, V. Matouvsek. Digital Signal Processing, 19 (3), 372 (2009). DOI: 10.1016/j.dsp.2008.06.002
  38. J. Borkowska-Burnecka, W. Zyrnicki, M. We na, P. Jamroz. Intern. J. Spectroscopy, 2016, 1 (2016). DOI: 10.1155/2016/7521050
  39. N. Konjevic, M. Ivkovic, N. Sakan. Spectrochimica Acta Part B: Atomic Spectroscopy, 76, 16--26 (2012). DOI: 10.1016/j.sab.2012.06.026
  40. L. Yang, X. Tan, X. Wan, L. Chen, D. Jin, M. Qian, G. Li. J. Appl. Phys., 115 (16), 163106 (2014). DOI: 10.1063/1.4873960
  41. M. Morhavc. Nucl. Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 559 (1), 119--123 (2006). DOI: 10.1016/j.nima.2005.11.129

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru