Non-homogeneous plastic deformation of amorphous metallic alloys under the action of a quasi-static mechanical load
Slyadnikov E.E1, Turchanovsky I.Yu.1
1Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
Email: eeslyadnikov@gmail.com

PDF
A hypothesis is formulated and substantiated that quasi-static deformation in an amorphous metal alloy is a complex relaxation multi-stage process, which is a hierarchical sequence of interrelated structural transitions of the first order ordered in time. These nonequilibrium processes sequentially proceed at different scale space-time levels, starting from the lowest level - a cluster of atoms of the first coordination sphere with a relaxation time taueta, then the middle level - a nanocluster of atoms of the fifth coordination sphere with a relaxation time tauφ, spatial scale of 10 nm and relaxation time tau, and tau>>tauφ>>taueta. They are accompanied by transformations of various types of potential energy of atoms (elastic, inelastic, plastic deformation, ZST) into each other. A mechanism and a model of a nonequilibrium transition from an elastic mechanical state to a state with shear transformation zones, a mechanism and a model of localized plastic deformation in an amorphous metal alloy are constructed. In the interval of non-uniqueness, in response to a locally introduced perturbation, a traveling autowave arises, which transfers the slip band from the inelastic deformation regime to the plastic deformation regime. Model parameters are estimated and important physical properties of plastic deformation are calculated. Keywords: Amorphous metal alloys, mechanical load, plastic deformation, nonequilibrium structural transition, synergetic model, kinetic equations, autowave.
  1. K. Sudzuki, K. Khudzimori, K. Khasimoto. Amorfnye Metally (Metallurgiya, M., 1987), 328 p. (in Russian)
  2. A.M. Glezer, N.A. Shurygina. Amorfno-nanokristallicheskiye splavy (Fizmatlit, M., 2013), 452 p. (in Russian)
  3. G.E. Abrosimova. UFN, 181, 1265--1281 (2011) (in Russian). DOI: 10.3367/UFNr.0181.201112b.1265
  4. F. Spaepen. In: Houches Lectures XXXV on Physics of Defects (North Holland Press, Amsterdam, 1981), p. 133--174
  5. G. Neikhauzer, R.P. Shtossel'. V sb.: Bystrozakalennye metallicheskie splavy, pod red. S. Shtiba, G. Varlimonta (Metallurgiya, M., 1989), p. 247--252 (in Russian)
  6. F. Spaepen. Acta Metall., 25, 407--415 (1977). DOI: 10.1016/0001-6160(77)90232-2
  7. M. Stoica, J. Das, J. Bednarcik, H. Franz, N. Mattern, W.H. Wang, J. Eckert. J. Appl. Phys., 104, 0135222008. DOI: 10.1063/1.2952034
  8. G.E. Abrosimova, A.S. Aronin, N.S. Afonikova, N.P. Kobelev. FTT, 52 (9), 1763--1768 (2010) (in Russian)
  9. T.C. Hafnagel, J.A. Wert, J. Almer. Phys. Rev. B, 73 (6), 064204 (2006). DOI: 10.1103/PhysRevB.73.064204
  10. A.S. Argon, H.Y. Kuo. Mater. Sci. Eng. A, 39 (1), 101--109 (1979). DOI: 10.1016/0025-5416(79)90174-5
  11. D.E. Polk, D. Turnbull. Acta Metall., 20, 493--498 (1972). DOI: 10.1016/0001-6160(72)90004-1
  12. J.J. Gilman. J. Appl. Phys., 46, 1625--1633 (1975). DOI: 10.1063/1.321764
  13. M.F. Ashby, J. Logan. Scripta Met., 7, 513 (1973). DOI: 10.1016/0036-9748(73)90105-1
  14. E. Bouchbinder. Phys. Rev. E, 77, 051505 (2008). DOI: 10.1103/PhysRevE.77.051505
  15. J.S. Langer. Phys. Rev. E, 77, 021502 (2008). DOI: 10.1103/PhysRevE.77.021502
  16. E. Bouchbinder, J.S. Langer. Phys. Rev. E, 80, 031131 (2009). DOI: 10.1103/PhysRevE.80.031131
  17. E. Bouchbinder, J.S. Langer. Phys. Rev. E, 80, 031132 (2009). DOI: 10.1103/PhysRevE.80.031132
  18. E. Bouchbinder, J.S. Langer. Phys. Rev. E, 80, 031133 (2009). DOI: 10.1103/PhysRevE.80.031133
  19. V.E. Panin, V.A. Likhachev, Yu.V. Grinyaev. Strukturnye urovni deformatsii tverdykh tel (Nauka, Novosibirsk, 1985), 255 p. (in Russian)
  20. E.E. Slyadnikov, I.Yu. Turchanovskiy. ZhTF, 91 (11), 1662 (2021) (in Russian). DOI: 10.21883/JTF.2021.11.51526.35-21
  21. Y.Y. Slyadnikov. Izv. vuzov. Fizika, 64 (12), 27 (2021) (in Russian). DOI: 10.17223/00213411/64/12/27
  22. S.Yu. Korostelev, E.E. Slyadnikov, I.Yu. Turchanovskiy. Izv. vuzov. Fizika, 65 (8), 49 (2022) (in Russian). DOI: 10.17223/00213411/65/8/49
  23. S.Yu. Korostelev, E.E. Slyadnikov, I.Yu. Turchanovsky. AIP Conf. Proc., 2509, 020113 (2022). DOI: 10.1063/5.0084375
  24. S.Yu. Korostelev, E.E. Slyadnikov, I.Yu. Turchanovskiy. Tez. dokl. mezhdun. konf. "Fizicheskaya mezomekhanika materialov. Fizicheskite printsipy formirovaniya mnogourovnvoy struktury i mekhanizmy nelineinogo povedeniya" (Tomsk, Rossiya, 2022), p. 300--301 (in Russian). DOI: 10.25205/978-5-4437-1353-3-183
  25. G. Khaken. Synergetics (Mir, M., 1980), 406 p. (in Russian)
  26. L.D. Landau, E.M. Lifshitz. Statisticheskaya fizika. Ch. I (Nauka, M., 1976), 584 p. (in Russian)
  27. L.D. Landau, I.M. Lifshits. Fizicheskaya Kinetika (Nauka, M., 2001), 528 p. (in Russian)
  28. L.D. Landau, E.M. Lifshitz. Teoriya uprugosti (Nauka, M., 1987), 247 p. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru