Arrays of Quasi-One-Dimensional GaAs Nanocrystals Grown on the Oxidized Surface of the Si/GaAs(001) Heterostructure: Effect of the Si Epitaxial Layer on the Array Structure
Emelyanov E. A. 1, Del’ T. A.2, Petrushkov M. O. 1, Nastovjak A. G. 1,2, Spirina A. A.1, Gavrilova T. A.1, Semyagin B. R. 1, Vasev A. V.1, Putyato M. A. 1, Preobrazhenskii V. V. 1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: e2a@isp.nsc.ru, tatyana.del2002@gmail.com, maikdi@isp.nsc.ru, alla@isp.nsc.ru

PDF
Structures with arrays of planar and tilted quasi-one-dimensional GaAs nanocrystals have been grown on GaAs(001) substrates. An epitaxial silicon layer oxidized in air was used as a passivation coating. The amount of silicon deposited varied from structure to structure and was equivalent to 1, 2, 4, and 6 atomic layers. It has been found that in the case of a passivation layer based on silicon with a thickness of 1 atomic layer, an array of planar nanocrystals is formed, and in other cases, inclined quasi-one-dimensional nanocrystals. Nanocrystals are surrounded by crystallites, the shape, size, orientation, and distribution density of which change with the amount of silicon. The lowest density of crystallites was achieved with a silicon layer 6 atomic layers thick. Keywords: molecular-beam epitaxial, GaAs, Si, quasi-one-dimensional nanocrystals, vapour-liquid-crystal.
  1. E. Barrigon, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson, Chem. Rev., 119 (15), 9170 (2019). DOI: 10.1021/acs.chemrev.9b00075
  2. H.-J. Choi, in Handbook of crystal growth: thin films and epitaxy, 2nd ed. (Elsevier, Amsterdam, 2014), p. 399--439
  3. K.A. Dick, Prog. Cryst. Growth Charact. Mater., 54 (3-4), 138 (2008). DOI: 10.1016/j.pcrysgrow.2008.09.001
  4. S. Breuer, M. Hilse, A. Trampert, L. Geelhaar, H. Riechert, Phys. Rev. B, 82 (7), 075406 (2010). DOI: 10.1103/PHYSREVB.82.075406
  5. V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Phys. Rev. E, 73 (2), 021603 (2006). DOI: 10.1103/PHYSREVE.73.021603
  6. J.C. Harmand, G. Patriarche, N. Pere-Laperne, M-N. Merat-Combes, L. Travers, F. Glas, Appl. Phys. Lett., 87 (20), 203101 (2005). DOI: 10.1063/1.2128487
  7. S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Nano Lett., 11 (3), 1276 (2011). DOI: 10.1021/nl104316t
  8. A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J.R. Morante, Appl. Phys. Lett., 92 (6), 063112 (2008). DOI: 10.1063/1.2837191
  9. F. Matteini, G. Tutuncuovglu, H. Potts, F. Jabeen, A. Fontcuberta i Morral, Cryst. Growth Des., 15 (7), 3105 (2015). DOI: 10.1021/acs.cgd.5b00374
  10. F. Matteini, G. Tutuncuovglu, D. Ruffer, E. Alarcon-Llado, A. Fontcuberta i Morral, J. Cryst. Growth., 404, 246 (2014). DOI: 10.1016/j.jcrysgro.2014.07.034
  11. T. Rieger, S. Heiderich, S. Lenk, M.I. Lepsa, D. Grutzmacher, J. Cryst. Growth., 353 (1), 39 (2012). DOI: 10.1016/j.jcrysgro.2012.05.006
  12. S. Ambrosini, M. Fanetti, V. Grillo, A. Franciosi, S. Rubini, AIP Adv., 1 (4), 042142 (2011). DOI: 10.1063/1.3664133
  13. E.A. Emelyanov, A.G. Nastovjak, M.O. Petrushkov, M.Yu. Esin, T.A. Gavrilova, M.A. Putyato, N.L. Schwartz, V.A. Shvets, A.V. Vasev, B.R. Semyagin, V.V. Preobrazhenskii, Tech. Phys. Lett., 46 (2), 161 (2020). DOI: 10.1134/S1063785020020194
  14. P. Aseev, A. Fursina, F. Boekhout, F. Krizek, J.E. Sestoft, F. Borsoi, S. Heedt, G. Wang, L. Binci, S. Marti -Sanchez, T. Swoboda, R. Koops, E. Uccelli, J. Arbiol, P. Krogstrup, L.P. Kouwenhoven, P. Caroff, Nano Lett., 19 (1), 218 (2019). DOI: 10.1021/acs.nanolett.8b03733
  15. M. Lopez, Y. Takano, K. Pak, H. Yonezu, Jpn. J. Appl. Phys., 31 (6R), 1745 (1992). DOI: 10.1143/JJAP.31.1745
  16. R.S. Dowdy, D.A. Walko, X. Li, Nanotechnology, 24 (3), 035304 (2013). DOI: 10.1088/0957-4484/24/3/035304
  17. I. Jimenez, F.J. Palomares, J. Avila, M.T. Cuberes, F. Soria, J.L. Sacedon, K. Horn, J. Vac. Sci. Technol. A., 11 (4), 1028 (1993). DOI: 10.1116/1.578808
  18. J. Ivanco, T. Kubota, H. Kobayashi, J. Appl. Phys., 97 (7), 073712 (2005). DOI: 10.1063/1.1873037
  19. S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguchi, T. Usami, Y. Shiraki, R. Ito, Jpn. J. Appl. Phys., 37 (12B), L1493 (1998). DOI: 10.1143/JJAP.37.L1493

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru