Arrays of Quasi-One-Dimensional GaAs Nanocrystals Grown on the Oxidized Surface of the Si/GaAs(001) Heterostructure: Effect of the Si Epitaxial Layer on the Array Structure
Emelyanov E. A.
1, Del’ T. A.
2, Petrushkov M. O.
1, Nastovjak A. G.
1,2, Spirina A. A.
1, Gavrilova T. A.
1, Semyagin B. R.
1, Vasev A. V.
1, Putyato M. A.
1, Preobrazhenskii V. V.
11Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: e2a@isp.nsc.ru, tatyana.del2002@gmail.com, maikdi@isp.nsc.ru, alla@isp.nsc.ru
Structures with arrays of planar and tilted quasi-one-dimensional GaAs nanocrystals have been grown on GaAs(001) substrates. An epitaxial silicon layer oxidized in air was used as a passivation coating. The amount of silicon deposited varied from structure to structure and was equivalent to 1, 2, 4, and 6 atomic layers. It has been found that in the case of a passivation layer based on silicon with a thickness of 1 atomic layer, an array of planar nanocrystals is formed, and in other cases, inclined quasi-one-dimensional nanocrystals. Nanocrystals are surrounded by crystallites, the shape, size, orientation, and distribution density of which change with the amount of silicon. The lowest density of crystallites was achieved with a silicon layer 6 atomic layers thick. Keywords: molecular-beam epitaxial, GaAs, Si, quasi-one-dimensional nanocrystals, vapour-liquid-crystal.
- E. Barrigon, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson, Chem. Rev., 119 (15), 9170 (2019). DOI: 10.1021/acs.chemrev.9b00075
- H.-J. Choi, in Handbook of crystal growth: thin films and epitaxy, 2nd ed. (Elsevier, Amsterdam, 2014), p. 399--439
- K.A. Dick, Prog. Cryst. Growth Charact. Mater., 54 (3-4), 138 (2008). DOI: 10.1016/j.pcrysgrow.2008.09.001
- S. Breuer, M. Hilse, A. Trampert, L. Geelhaar, H. Riechert, Phys. Rev. B, 82 (7), 075406 (2010). DOI: 10.1103/PHYSREVB.82.075406
- V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Phys. Rev. E, 73 (2), 021603 (2006). DOI: 10.1103/PHYSREVE.73.021603
- J.C. Harmand, G. Patriarche, N. Pere-Laperne, M-N. Merat-Combes, L. Travers, F. Glas, Appl. Phys. Lett., 87 (20), 203101 (2005). DOI: 10.1063/1.2128487
- S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Nano Lett., 11 (3), 1276 (2011). DOI: 10.1021/nl104316t
- A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J.R. Morante, Appl. Phys. Lett., 92 (6), 063112 (2008). DOI: 10.1063/1.2837191
- F. Matteini, G. Tutuncuovglu, H. Potts, F. Jabeen, A. Fontcuberta i Morral, Cryst. Growth Des., 15 (7), 3105 (2015). DOI: 10.1021/acs.cgd.5b00374
- F. Matteini, G. Tutuncuovglu, D. Ruffer, E. Alarcon-Llado, A. Fontcuberta i Morral, J. Cryst. Growth., 404, 246 (2014). DOI: 10.1016/j.jcrysgro.2014.07.034
- T. Rieger, S. Heiderich, S. Lenk, M.I. Lepsa, D. Grutzmacher, J. Cryst. Growth., 353 (1), 39 (2012). DOI: 10.1016/j.jcrysgro.2012.05.006
- S. Ambrosini, M. Fanetti, V. Grillo, A. Franciosi, S. Rubini, AIP Adv., 1 (4), 042142 (2011). DOI: 10.1063/1.3664133
- E.A. Emelyanov, A.G. Nastovjak, M.O. Petrushkov, M.Yu. Esin, T.A. Gavrilova, M.A. Putyato, N.L. Schwartz, V.A. Shvets, A.V. Vasev, B.R. Semyagin, V.V. Preobrazhenskii, Tech. Phys. Lett., 46 (2), 161 (2020). DOI: 10.1134/S1063785020020194
- P. Aseev, A. Fursina, F. Boekhout, F. Krizek, J.E. Sestoft, F. Borsoi, S. Heedt, G. Wang, L. Binci, S. Marti -Sanchez, T. Swoboda, R. Koops, E. Uccelli, J. Arbiol, P. Krogstrup, L.P. Kouwenhoven, P. Caroff, Nano Lett., 19 (1), 218 (2019). DOI: 10.1021/acs.nanolett.8b03733
- M. Lopez, Y. Takano, K. Pak, H. Yonezu, Jpn. J. Appl. Phys., 31 (6R), 1745 (1992). DOI: 10.1143/JJAP.31.1745
- R.S. Dowdy, D.A. Walko, X. Li, Nanotechnology, 24 (3), 035304 (2013). DOI: 10.1088/0957-4484/24/3/035304
- I. Jimenez, F.J. Palomares, J. Avila, M.T. Cuberes, F. Soria, J.L. Sacedon, K. Horn, J. Vac. Sci. Technol. A., 11 (4), 1028 (1993). DOI: 10.1116/1.578808
- J. Ivanco, T. Kubota, H. Kobayashi, J. Appl. Phys., 97 (7), 073712 (2005). DOI: 10.1063/1.1873037
- S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguchi, T. Usami, Y. Shiraki, R. Ito, Jpn. J. Appl. Phys., 37 (12B), L1493 (1998). DOI: 10.1143/JJAP.37.L1493
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.